Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Локтионова Оксана Геннадьевна Должность: проректор по учебной работе Дата подписания: 06.06.2022 12:49:52


Уникальный программный ключ:

минобрнауки россии

обытса образовательное образовательное учреждение высшего образования

учреждение высшего ооразования «Юго-Западный государственный университет» (ЮЗГУ)

Кафедра общей и прикладной физики

ИЗУЧЕНИЕ ЗАКОНОВ ДВИЖЕНИЯ НА УСТАНОВКЕ АТВУДА

Методические указания к выполнению лабораторной работы №1 по разделу «Механика и молекулярная физика» для студентов инженерно-технических специальностей

УДК 531

Составители: Т.И. Аксенова, Г.В. Карпова, Е.В. Пьянков

Рецензент

Доктор физико-математических наук, профессор Н.М.Игнатенко

Изучение законов движения на установке Атвуда: методические указания к выполнению лабораторной работы №1 по разделу «Механика и молекулярная физика»/Юго-зап. гос. ун-т; сост.: Т.И. Аксенова, Г.В. Карпова, Е.В. Пьянков.- Курск, 2015.- 9с.: ил.1, табл. 3. -Библиогр.: с.9.

Содержат сведения из теории кинематики и динамики поступательного движения тел. Предлагаются методы практического определения зависимости пройденного пути и скорости от времени при равноускоренном движении, а также методика для проверки второго закона Ньютона.

Методические указания соответствуют требованиям Федеральных образовательных стандартов высшего профессионального образования (ФГОС), Федерального компонента цикла общих математических и естественнонаучным дисциплин, а также рабочим учебным планам и рабочим программам по курсам разделов общей физики всех технических специальностей (направлений) подготовки ЮЗГУ.

Предназначены для студентов инженерно-технических специальностей всех форм обучения.

Текст печатается в авторской редакции

Подписано в печать . Формат 60х84 1/16. Усл.печ. л.0,5 . Уч.-изд. л. 0,5. Тираж 100 экз. Заказ . Бесплатно. Юго-Западный государственный университет. 305040, г. Курск, ул. 50 лет Октября, 94.

Лабораторная работа №1

Изучение законов движения на установке Атвуда

<u>Приборы и принадлежности:</u> установка Атвуда, набор грузов, секундомер.

<u>Цель работы</u>: исследовать зависимость пройденного пути и мгновенной скорости от времени для равноускоренного движения, проверить опытным путем справедливость второго закона Ньютона.

Краткая теория

Известны следующие зависимости для равноускоренного движения без начальной скорости: V = at , $S = \frac{at^2}{2}$.

Следовательно, мгновенные скорости равноускоренного движения пропорциональны времени движения: $\frac{V_1}{V_2} = \frac{t_1}{t_2}$, а пути пропорциональны квадрату времени движения $\frac{S_1}{S_2} = \frac{t_1^2}{t_2^2}$.

Из второго закона Ньютона $\vec{a} = \frac{\vec{F}}{m}$ (где $\vec{F} = \sum_i \vec{F}_i$ - результирующая всех сил, действующих на тело), следует, что при **m=const** ускорение тела (системы тел) пропорционально действующей силе:

$$\frac{\left|\vec{a}_1\right|}{\left|\vec{a}_2\right|} = \frac{\left|\vec{F}_1\right|}{\left|\vec{F}_2\right|}.$$

Эти закономерности и исследуются в данной работе на установке Атвуда.

Описание установки

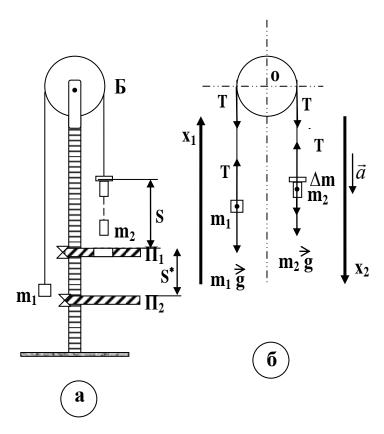


Рис. 1

Установка состоит из вертикальной рейки со шкалой, на которой закрепляются две полочки: сплошная Π_2 и с кольцевым отверстием Π_1 (рис. 1-а). В верхней части рейки имеется легкий блок $\mathbf{Б}$, через который переброшена нить с двумя грузами одинаковой массы $(m_1=m_2=m)$.

Если на груз m_2 положить перегрузок Δm , то равновесие системы будет нарушено, и она начнет двигаться с некоторым постоянным ускорением \vec{a} . Его можно определить из следующих рассуждений.

На каждый из грузов действуют две силы: сила тяжести mg и сила натяжения нити \vec{T} (рис. 1-б).

Будем считать нить невесомой, нерастяжимой скользящей по блоку без трения (массой и вращением блока можно пренебречь). В этом случае ее натяжение одинаково по всей длине

$$\left| \vec{T}_1 \right| = \left| \vec{T}_2 \right| = \left| \vec{T} \right|.$$

Т.к. нить практически нерастяжима, то ускорения грузов одинаковы по величине $|\vec{a}_1| = |\vec{a}_2| = |\vec{a}|$.

Запишем второй закон Ньютона для каждого из грузов $m\vec{a} = \sum\limits_{i} \vec{F_i}$:

для груза
$$\mathbf{m_1}$$
 $m_1 \vec{g} + \vec{T_1} = m_1 \vec{a}_1$, для груза $\mathbf{m_2}$ $(m_2 + \Delta m) \cdot \vec{g} + \vec{T}_2 = (m_2 + \Delta m) \cdot \vec{a}_2$.

Спроецируем полученные уравнения на оси X_1 и X_2 , направления которых совпадают с направлением движения грузов

$$T - m_1 g = m \cdot a$$

$$(m_2 + \Delta m) \cdot g - T = (m_2 + \Delta m) \cdot a$$

Решая эти уравнения относительно а, получим:

$$a = \frac{\Delta mg}{2m + \Delta m}.$$

Задание №1.

Исследование зависимости пройденного пути S от времени движения t при постоянном ускорении а

- **1.** Кладут на груз m_2 больший перегрузок Δm . При этом удерживают груз m_1 так, чтобы система оставалась неподвижной.
- **2.** Отпускают систему грузов (см.рис.1) и одновременно включают секундомер. Система приходит в равноускоренное движение.
- **3.** В момент снятия перегрузка Δm полочкой Π_1 секундомер выключают и записывают его показания t_1 . Опыт повторить 3 раза и найти среднее время $\langle t_1 \rangle$.
- **4.** Все действия, указанные в пунктах 1-3 повторяют еще для двух положений груза $(m_2+\Delta m)$ относительно полочки Π_1 (расстояний S_2 и S_3) при неизменной массе перегрузка Δm (что гарантирует одинаковость ускорения). Находят соответствующие

средние показания секундомера $\langle t_1 \rangle$, $\langle t_2 \rangle$, $\langle t_3 \rangle$. Данные измерений заносят в таблицу 1.

5. Сравнивая соотношения

$$\frac{S_1}{S_2}$$
 и $\frac{\left\langle t_1 \right\rangle^2}{\left\langle t_2 \right\rangle^2}$, $\frac{S_2}{S_3}$ и $\frac{\left\langle t_2 \right\rangle^2}{\left\langle t_3 \right\rangle^2}$, $\frac{S_1}{S_3}$ и $\frac{\left\langle t_1 \right\rangle^2}{\left\langle t_3 \right\rangle^2}$ сделать вывод о зависимо-

сти проходимого телом пути от времени при равноускоренном движении без начальной скорости.

Таблица 1

№	<i>S</i> , м	t, c	⟨ <i>t</i> ⟩,	$\frac{S_1}{S_2}$; $\frac{S_2}{S_2}$	$\frac{S_2}{S_3}; \frac{S_1}{S_3}$	$\frac{\left\langle t_1 \right\rangle^2}{\left\langle t_2 \right\rangle^2}$	$; \frac{\left\langle t_2 \right\rangle^2}{\left\langle t_3 \right\rangle^2};$	$\frac{\left\langle t_1 \right\rangle^2}{\left\langle t_3 \right\rangle^2}$
1								
2								
3								

Задание №2. Исследование зависимости скорости V от времени движения t при постоянном ускорении а

- 1. Установить кольцевую полочку Π_1 на расстоянии S^* от сплошной полочки Π_2 (S^* по рекомендации преподавателя).
- 2. Положить на груз m_2 тот же перегрузок Δm , что был использован в задании 1, который не проходит через кольцевое отверстие в Π_1 . Систему при этом удерживают в равновесии. Положения груза $(m_2 + \Delta m)$ от полочки Π_1 задаем такими же, как и в задании N21 (S_1, S_2, S_3)
- 3. Отпустить удерживаемый груз. Время его движения $\langle t_1 \rangle, \langle t_2 \rangle, \langle t_3 \rangle$ было определено при выполнении задания 1 и занесено в таблицу 1.
- 4. Измерить времена t_1^* , t_2^* , t_3^* движения груза m_2 от кольцевой полочки Π_1 (с момента снятия перегрузка Δm) до сплошной полочки Π_2 (до момента удара о Π_2). Опыт повторить 3 раза для каждого (S_1 , S_2 , S_3) и найти $< t_1^* >$, $< t_2^* >$, $< t_3^* >$.

- 5. Определить мгновенные скорости $|\vec{V_1}|$, $|\vec{V_2}|$, $|\vec{V_3}|$ движения груза m_2 в момент снятия перегрузка Δm на кольцевой полке можно следующим образом. Начиная с момента снятия перегрузка Δm движение системы из равноускоренного переходит в равномерное со скоростью $|\vec{V}|$, равной мгновенной конечной скорости в конце пути S. С этой же скоростью $|\vec{V}|$ она уже равномерно движется между полочками Π_1 и Π_2 и следовательно может быть рассчитана по формуле $|\vec{V}| = \frac{S^* h}{\langle t_1^* \rangle}$, где h высота цилиндрического груза.
- 6. Рассчитать V_1 , V_2 , V_3 при неизменной массе перегрузка Δm (это гарантирует одинаковость ускорения, при неизменном расстоянии S^*). Данные занести в таблицу 2.
 - 7. Сравнить соотношения

$$\frac{\left|\vec{V}_1\right|}{\left|\vec{V}_2\right|} \ \mathbf{u} \ \frac{\left\langle t_1\right\rangle}{\left\langle t_2\right\rangle}, \quad \frac{\left|\vec{V}_2\right|}{\left|\vec{V}_3\right|} \ \mathbf{u} \ \frac{\left\langle t_2\right\rangle}{\left\langle t_3\right\rangle}, \quad \frac{\left|\vec{V}_1\right|}{\left|\vec{V}_3\right|} \ \mathbf{u} \ \frac{\left\langle t_1\right\rangle}{\left\langle t_3\right\rangle}$$

и сделать вывод о зависимости скорости от времени при равноускоренном движении без начальной скорости .

Таблица 2

№ п/ п	S,	⟨t⟩, c	S*,	<i>t</i> *, (2	$\langle t^* \rangle$,	$ \vec{V} ,$ _{M/c}	$\frac{\left \vec{\mathrm{V}}_{1}\right }{\left \vec{\mathrm{V}}_{2}\right }$	$; \frac{\left \vec{V}_{2}\right }{\left \vec{V}_{3}\right };$	$\frac{\left \vec{\mathbf{V}}_{1}\right }{\left \vec{\mathbf{V}}_{3}\right }$	$\frac{t_1}{t_2}$;	$\frac{t_2}{t_3}$;	$\frac{t_1}{t_3}$
1													
2													
3													

Примечание: колонку в табл. 2 со значениями (t) взять из табл.1.

Задание №3. Проверка второго закона Ньютона

- 1. Определить взвешиванием массы перегрузков Δm_1 и Δm_2 .
- 2. На груз m_1 поместить перегрузок Δm_1 , а на груз m_2 второй перегрузок Δm_2 ($\Delta m_2 > \Delta m_1$). Систему при этом удерживать в

равновесии. Положение груза $m_2 + \Delta m_2$ по отношении к кольцевой полочке Π_1 задается преподавателем (это расстояние S)/

- 3. Отпустив систему грузов, одновременно включить секундомер и измерить время t_1 движения груза $(m_2 + \Delta m_2)$ до снятия перегрузка Δm_2 полочкой Π_1 . Опыт повторить 3 раза и найти $\langle t_1 \rangle$.
 - 4. Определить ускорение движения системы по формуле:

$$\left|\vec{a}_1\right| = \frac{2S}{\left\langle t_1^2 \right\rangle}$$

5. Оба перегрузка Δm_1 и Δm_2 поместить на груз m_2 . Все действия, указанные в пунктах 1–5, повторить. Вычислить ускорение по формуле: $\left|\vec{a}_2\right| = \frac{2S}{\left\langle t_2^2\right\rangle}$.

6. Определить силы, вызывающие ускорение системы тел для двух случаев из соотношений:

7. Проверить выполнение равенства отношений

$$\frac{\left|\vec{a}_1\right|}{\left|\vec{a}_2\right|} = \frac{\left|\vec{F}_1\right|}{\left|\vec{F}_2\right|},$$

вытекающее из второго закона Ньютона при условии постоянства массы системы m=2 $m_{\text{цилиндра}} + \Delta m_1 + \Delta m_2$.

Все результаты занести в таблицу 3.

8. Сделать выводы о зависимости ускорения системы постоянной массы от величины приложенной силы.

Таблица 3

<i>S</i> , м	t, c		⟨ <i>t</i> ⟩, c	a , m/c^2	F, H	$rac{\leftert ec{a}_{1} ightert}{\leftert ec{a}_{2} ightert}$	$\frac{\left \vec{F}_1\right }{\left \vec{F}_2\right }$	

Контрольные вопросы

- 1. Что понимают под перемещением, мгновенной и средней скоростью? Как рассчитывается мгновенная и средняя скорости, зная, например, функцию S(t)?
- 2. Что такое ускорение? Назовите составляющие полного ускорения при криволинейном движении. По каким формулам они рассчитываются?
- 3. Приведите уравнения равномерного и равнопеременного движения вдоль оси ОУ. Приведите графики этих движений.
- 4. Сформулируйте законы Ньютона. Укажите границы их применимости. Понятия силы, массы.
- 5. Приведите примеры составления уравнений движения тел по второму закону Ньютона при движении связанных тел.

Библиографический список

- 1. Трофимова Т.И. Курс физики: учеб. пособие. -М.: Академия, 2015. 560 с.
- 2. Савельев И.В. Курс физики: учебное пособие: в 3 т. Т. 1: Механика. Молекулярная физика. СПб.: Лань, 2011, 352 с.
- 3. Полунин В.М., Сычев Г.Т. Физика. Основы механики: конспект лекций / Курск. гос. техн. ун-т.- Курск, 2003. -180 с.