Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Емельянов Сергей Геннадьевич

Должность: ректор

МИНОБРНАУКИ РОССИИ

Дата подписания: 04. Федеральное государственное бюджетное образовательное Уникальный программный ключ:

9ba7d3e34c012eba476ffd2d064cf2781953be учреждение выслиего образования

«Юго-Западный государственный университет» (ЮЗГУ)

Кафедра программной инженерии

МЕТОД ВЕТВЕЙ И ГРАНИЦ ДЛЯ РЕШЕНИЯ ЗАДАЧ ЦЕЛОЧИСЛЕННОГО ПРОГРАММИРОВАНИЯ

Методические указания к практическому занятию по дисциплине «Методы оптимальных решений» для студентов направления подготовки 38.03.01 «Экономика»

УДК 519.6

Составители: В.В. Свиридов, Т.В. Алябьева

Рецензент:

кандидат технических наук, доцент кафедры программной инженерии ЮЗГУ В.В. Апальков

Метод ветвей и границ для решения задач целочисленного программирования: методические указания к практическому занятию по дисциплине «Методы оптимальных решений» для студентов направления подготовки 38.03.01 «Экономика» / Юго-Зап. гос. ун-т; сост.: В.В. Свиридов, Т.В. Алябьева. Курск, 2018. 16 с.

Изложены основные сведения о нахождении целочисленных решений задач методом ветвей и границ. Рассмотрены примеры выполнения заданий. Приведены варианты заданий, контрольные вопросы к защите практической работы.

Методические указания соответствуют требованиям рабочей программы по дисциплине «Методы оптимальных решений».

Материал предназначен для студентов 38.03.01 «Экономика» очной и заочной форм обучения.

Текст печатается в авторской редакции

Подписано в печать 02.10.2018.. Формат 60 x 84 1/16. Усл. печ. л.0,7. Уч.- изд. л.0,6. Тираж 100 экз. Заказ 2134. Бесплатно. Юго-Западный государственный университет. 305040, Курск, ул. 50 лет Октября, 94.

Содержание

1. Цель занятия	4
2. Краткие теоретические сведения	4
3. Пример выполнения задания	
4. Индивидуальные задания	
5. Контрольные вопросы	16

МЕТОД ВЕТВЕЙ И ГРАНИЦ ДЛЯ РЕШЕНИЯ ЗАДАЧ ЦЕЛОЧИСЛЕННОГО ПРОГРАММИРОВАНИЯ

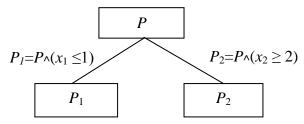
1. Цель занятия

Целью практического занятия является получение навыков нахождения целочисленных решений экономических задач методом ветвей и границ.

Задание. Дана стандартная задача линейного программирования. Привести ее к каноническому виду и решить симплекс методом. В случае получения решения, в котором хотя бы одна переменная дробная, применить метод ветвей и границ для получения полностью целочисленного решения.

2. Краткие теоретические сведения

Метод ветвления задач линейного программирования для нахождения целочисленного решения лучше всего разобрать на примере. Пусть P текущая задача линейного программирования, которая решена и для компоненты x_1 оптимального решения получено дробное значение $x_1 = 5/5$. Ясно, что на самом деле должно быть либо $x_1 \le \lfloor 5/3 \rfloor = 1$ либо $x_1 \ge \lceil 5/3 \rceil = 2$. Таким образом, из решенной промежуточной задачи мы получили две новые задачи вида $P_1 = P \land (x_1 \le 1)$ и $P_2 = P \land (x_1 \ge 2)$, что показывается графически в виде простейшего дерева вида



При совершении ветвления все допустимые целочисленные решения, в том числе и искомое оптимальное, сохраняются в допустимом множестве одной из задач, а найденное текущее оптимальное отсекается, то есть не принадлежит допустимому множеству ни одной задач P_1 P_2 . Это гарантирует от повторного нахождения решения, полученного для задачи P.

Важным элементом метода ветвей и границ является использование границ, в данном случае величины R (рекорд) или

границы снизу. В начале применения метода ветвей и границ полагаем $R = \infty$, то есть вначале рекорд неизвестен.

Допустим, в ходе решения одной из частных задач линейного программирования P_i при применении симплекс-метода к данной частной задаче было получено оптимальное решение $\overline{x}^{(i)}$, которое оказалось целочисленным, то есть $\overline{x}^{(i)} \in Z^n$.

В этом случае целевую функцию полученного целочисленного решения $z^{(i)}=z\Big(\overline{x}^{(i)}\Big)$ нужно сравнить с предыдущим значением рекорда R и, если $z^{(i)}=z\Big(\overline{x}^{(i)}\Big) < R$, то необходимо обновить рекорд по формулам $R=z^{(i)}, \ \overline{x}^{(rec)}=\overline{x}^{(i)},$ то есть, обновляем как величину рекорда, так и допустимый целочисленный вектор, на котором новый рекорд достигается.

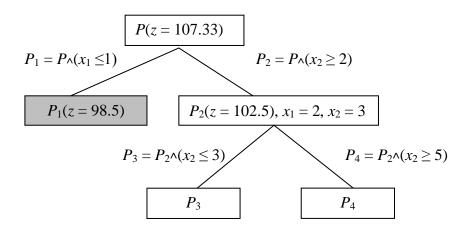
В частности, рекорд всегда обновляется при первом получении допустимого решения, когда до этого было $R = \infty$. Использование текущего рекорда позволяет сократить количество генерируемых частных задач линейного программирования и уменьшить объем вычислительной работы по нахождению оптимального решения.

Пусть, например, к моменту решения частной задачи P имели значение рекорда R=100. Решив задачу P, получили z(P)=107.33 и значение $x_1=5/3$, как уже описывалось в первом примере.

Таким образом, на нецелом оптимальном решении задачи значение целевой функции оказалось больше рекорда, следовательно, при ветвлении задачи P возможно в принципе получить лучшее допустимое решение, чем текущий рекорд, поэтому задача P подвергается ветвлению по переменной x_1 , как описывалось выше на две частные подзадачи P_1 , P_2 .

Допустим, решая далее эти задачи симплекс-методом, получили $z(P_1) = 98.5$ и $z(P_2) = 102.5$, $x_1 = 2$, $x_2 = 3.5$. Тогда вершина P_1 далее не ветвится, так как является бесперспективной для обновления текущего рекордного решения, потому что при добавлении ограничений целевая функция может только уменьшится от значения 98.5 для базовой задачи и никогда не превзойдет текущего рекорда R = 100.

Задачу же P_2 целесообразно далее ветвить, обновление текущего рекорда при этом возможно, так как $z(P_2) = 102.5 > R = 100$, при этом мы получаем дерево ветвления следующего вида:



Закрытая вершина на данном рисунке показана заливкой.

Алгоритм метода ветвей и границ выбирает всегда для ветвления *первую незакрытую задачу* линейного программирования в нижнем слое текущего дерева задач.

Выбранная для ветвления задача решается симплекс-методом, после этого обновляется (или сохраняется прежним) рекорд по всем рассмотренным частным задачам. Далее выполняется ветвление по первой нецелой компоненте в оптимальном решении задачи, выбранной для ветвления.

Данные действия выполняются до тех пор, пока все частные задачи будут подвергнуты ветвлению или закрытию по рекорду, в этом случае дерево подзадач будет полностью сформированным и решением всей исходной задачи будет текущее рекордное решение, оставшееся после полного построения дерева вариантов.

У полностью сформированного дерева вариантов все терминальные вершины (то есть листья) будут закрытыми частными задачами линейного программирования.

Частная задача линейного программирования, принадлежащая дереву задач, закрывается в двух случаях:

- эта задача отсекается по текущему рекорду;
- когда ее решение является полностью целочисленным.

Закрытая задача далее не ветвится и является листом дерева задач.

3. Пример выполнения задания

Дана целочисленная задача линейного программирования

$$z = 2x_1 + 3x_2 \rightarrow \max;$$

$$2x_1 + x_2 \le 10;$$

$$x_1 + 4x_2 \le 11$$
;

$$x_1, x_2 \ge 0;$$

$$x_1, x_2 \in \mathbb{Z}$$
.

Инициализируем текущий рекорд $R = \infty$. Решаем данную задачу линейного программирования симплекс-методом.

Приведем задачу к каноническому виду.

$$z \rightarrow \max$$
;

$$z - 2x_1 - 3x_2 + 0 \cdot s_1 + 0 \cdot s_2$$
;

$$2x_1 + x_2 + s_1 + 0 \cdot s_2 = 10;$$

$$x_1 + 4x_2 + 0 \cdot s_1 + s_2 = 11;$$

$$x_1, x_2, s_1, s_2 \ge 0;$$

Составим начальную симплекс-таблицу и приведем ее к оптимальному виду.

В	Z	x_1	x_2	s_1	s_2	Реш.	B_i/A_{ij}	Комм.
z	1	-2	-3	0	0	0	_	Не опт.
s_1	0	2	1	1	0	10	10	$x_2 \rightarrow B$
s_2	0	1	4	0	1	11	11/4	$B \rightarrow s_2$

В	Z	x_1	x_2	s_1	s_2	Реш.	B_i/A_{ij}	Комм.
z	1	-5/4	0	0	3/4	33/4	_	Не опт.
s_1	0	7/4	0	1	-1/4	29/4	29/5	$x_1 \rightarrow B$
x_2	0	1/4	1	0	1/4	11/4	11	$B \rightarrow s_1$

В	Z	x_1	x_2	s_1	s_2	Реш.	B_i/A_{ij}	Комм.
z	1	0	0	5/7	4/7	94/7	_	ОПТ.
x_1	0	1	0	4/7	-1/7	29/7		-
x_2	0	0	1	-1/7	2/7	12/7	_	_

Получили оптимальное, но дробное решение:

$$z = 94/7$$
, $x_1 = 29/7$, $x_2 = 12/7$.

Рекорд сохранил свое прежнее значение $R = \infty$, так как вновь полученное решение не является целочисленным.

Берем первую дробную компоненту найденного решения и выполняем по ней ветвление, то есть, рассматриваем две новые задачи $P_1 = P \wedge (x_1 \le |29/7| = 4)$ и $P_2 = P \wedge (x_1 \ge \lceil 29/7 \rceil = 5)$.

Рассмотрим первую задачу из двух вновь построенных.

Приведем дополнительное ограничение $x_1 \le 4$. Из последней симплекс таблицы базовой задачи P имеем $x_1 = 29/7 - 4/7 \cdot s_1 + 1/7 \cdot s_2$, то есть мы выразили базисную переменную x_1 через не базовые переменные s_1, s_2 . Запишем теперь ограничение $x_1 \le 4$ с помощью полученного выражения:

$$29/7 - 4/7 \cdot s_1 + 1/7 \cdot s_2 \le 4 \Leftrightarrow -4/7 \cdot s_1 + 1/7 \cdot s_2 \le -1/7$$

В полученном выражении вводим новую остаточную переменную s_3 , которая будет базисной: $-4/7 \cdot s_1 + 1/7 \cdot s_2 + s_3 = -1/7$.

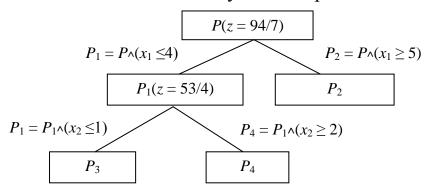
Данное ограничение добавляем к последней симплекс-таблице задачи P и доводим таблицу до оптимальной с помощью двойственного симплекс-метода.

В	Z	x_1	x_2	s_1	s_2	s_3	Реш.	Комм.
\mathcal{Z}	1	0	0	5/7	4/7	0	94/7	Не доп.
x_1	0	1	0	4/7	-1/7	0	29/7	$B \rightarrow s_3$
x_2	0	0	1	-1/7	2/7	0	12/7	$s_1 \rightarrow B$
s_3	0	0	0	-4/7	1/7	1	-1/7	
Z_j/A_{ij}	_	_	_	-5/7	_	_	_	

В	z	x_1	x_2	s_1	s_2	s_3	Реш.	Комм.
z	1	0	0	0	3/4	5/4	53/4	Не доп.
x_1	0	1	0	0	0	1	4	$B \rightarrow s_3$
x_2	0	0	1	0	1/4	-1/4	7/4	$s_1 \rightarrow B$
s_1	0	0	0	1	-1/4	-7/4	1/4	

Видим, что получено дробное значение $x_2=7/4$. Построим две задачи $P_3=P_1\wedge \left(x_2\leq \mid 7/4\mid =1\right)$ и $P_4=P_1\wedge \left(x_2\geq \mid 7/4\mid +1=2\right)$

В данный момент имеем следующее дерево частных задач:



В соответствии со стратегией ветвления рассматриваем незакрытые задачи нижнего слоя, начиная с задачи P_3 .

Задача P_3 получается из задачи P_1 добавлением ограничения $x_2 \le 1$.

Из последней симплекс-таблицы задачи P_1 имеем $x_2=7/4-1/4\cdot s_2+1/4\cdot s_3$. Отсюда получаем $7/4-1/4\cdot s_2+1/4\cdot s_3\leq 1\Leftrightarrow -1/4\cdot s_2+1/4\cdot s_3\leq -3/4$.

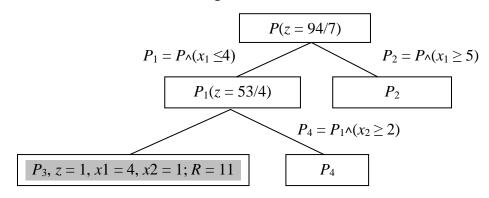
Добавляем новую остаточную переменную s_4 как базовую. Получаем $-1/4 \cdot s_2 + 1/4 \cdot s_3 + s_4 = -3/4$. Добавляем это ограничение в последнюю симплекс-таблицу задачи P_1 и доводим таблицу до оптимальной с помощью двойственного симплекс-метода.

В	z	x_1	x_2	s_1	s_2	s_3	s_4	Реш.	Комм.
z	1	0	0	0	3/4	5/4	0	53/4	Не доп.
x_1	0	1	0	0	0	1	0	4	$B \rightarrow s_4$
x_2	0	0	1	0	1/4	-1/4	0	7/4	$s_1 \rightarrow B$
<i>S</i> ₁	0	0	0	1	-1/4	-7/4	0	1/4	
s_4	0	0	0	0	-1/4	1/4	1	-3/4	
Z_j/A_{ij}	_	_	_	_	-3	_	_	_	

В	z	x_1	x_2	s_1	s_2	<i>s</i> ₃	s_4	Реш.	Комм.
z	1	0	0	0	0	2	3	11	Опт.
x_1	0	1	0	0	0	1	0	4	
x_2	0	0	1	0	0	0	1	1	
<i>s</i> ₁	0	0	0	1	0	-2	-1	1	
s_2	0	0	0	0	1	-1	_	3	

Таким образом, для задачи P_3 имеем $z=11, x_1=4, x_2=1$. Так как компоненты вектора решения целочисленные, то получаем новое значение текущего рекорда $R=11, x_1^{\rm rec}=4, x_2^{\rm rec}=1$.

Имеем такое состояние дерева задач:



Далее необходимо рассматривать задачу P_4 , как следующую незакрытую в последнем слое. Она строится из родительской задачи P_1 добавлением ограничения $x_2 \ge 3$.

Из последней симплекс-таблицы задачи P_1 имеем $x_2=7/4-1/4\cdot s_2+1/4\cdot s_3$. Отсюда получаем: $7/4-1/4\cdot s_2+1/4\cdot s_3\geq 3 \Leftrightarrow -1/4\cdot s_2+1/4\cdot s_3\geq 1/4 \Leftrightarrow \Leftrightarrow 1/4\cdot s_2-1/4\cdot s_3\leq -1/4$

Добавляем новую остаточную переменную s_4 как базовую. Получаем $1/4 \cdot s_2 - 1/4 \cdot s_3 + s_4 = -1/4$.

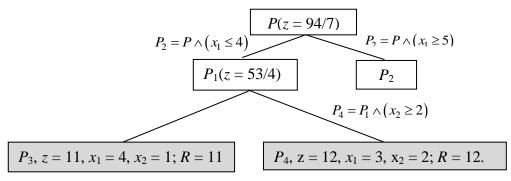
Добавляем это ограничение в последнюю симплекс-таблицу задачи P_1 и доводим таблицу до оптимальной с помощью двойственного симплекс-метода.

В	z	x_1	x_2	s_1	s_2	s_3	s_4	Реш.	Комм.
\overline{z}	1	0	0	0	3/4	5/4	0	53/4	Не доп.
x_1	0	1	0	0	0	1	0	4	$B \rightarrow s_4$
x_2	0	0	1	0	1/4	-1/4	0	7/4	$s_3 \rightarrow B$
s_1	0	0	0	1	-1/4	-7/4	0	1/4	
s_4	0	0	0	0	1/4	-1/4	1	-1/4	
Z_j/A_{ij}	_	_	_	_	0	-5	_	_	

В	z	x_1	x_2	s_1	s_2	s_3	s_4	Реш.	Комм.
z	1	0	0	0	2	0	5	12	Опт.
x_1	0	1	0	0	1	0	4	3	
x_2	0	0	1	0	0	0	-1	2	
s_1	0	0	0	1	-2	0	- 7	2	
s_3	0	0	0	0	-1	1	-4	1	

Таким образом, для задачи P_4 имеем z=12, $x_1=3$, $x_2=2$. Так как компоненты вектора решения целочисленные и значение целевой функции z=12 больше предыдущего значения рекорда R=11, то получаем новое значение текущего рекорда R=12, $x_1^{\rm rec}=3$, $x_2^{\rm rec}=2$.

Имеем такое состояние дерева задач:



Далее необходимо рассматривать задачу P_2 , как следующую незакрытую в предпоследнем слое. Она строится из родительской задачи P добавлением ограничения $x_1 \ge 5$.

Из последней симплекс-таблицы задачи P имеем $x_1 = 29/7 - 4/7 \cdot s_1 + 1/7 \cdot s_2$.

Отсюда получаем:

$$29/7 - 4/7 \cdot s_1 + 1/7 \cdot s_2 \ge 5 \Leftrightarrow -4/7 \cdot s_1 + 1/7 \cdot s_2 \ge 6/7 \Leftrightarrow 4/7 \cdot s_1 - 1/7 \cdot s_2 \le -6/7$$

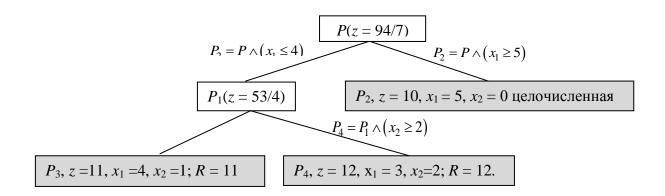
Добавляем новую остаточную переменную s_3 как базовую. Получаем $4/7 \cdot s_1 - 1/7 \cdot s_2 + s_3 = -6/7$. Добавляем это ограничение в последнюю симплекс-таблицу задачи P и доводим таблицу до оптимальной с помощью двойственного симплекс-метода.

В	z	x_1	x_2	s_1	s_2	s_3	Реш.	Комм.
z	1	0	0	5/7	4/7	0	94/7	Не доп.
x_1	0	1	0	4/7	-1/7	0	29/7	$B \rightarrow s_3$
x_2	0	0	1	-1/7	2/7	0	12/7	$s_1 \rightarrow B$
s_3	0	0	0	4/7	-1/7	1	-6/7	
Zj/Aij	1	_	_	_	-4	_	_	

Получаем симплекс-таблицу:

В	z	x_1	x_2	s_1	s_2	s_3	Реш.	Комм.
z	1	0	0	3	0	4	10	Опт.
x_1	0	1	0	0	0	-1	5	
x_2	0	0	1	1	0	2	0	
s_2	0	0	0	-4	1	- 7	8	

Таким образом, для задачи P_2 имеем z=10, $x_1=5$, $x_2=0$. Так как компоненты вектора решения целочисленные и значение целевой функции z=10 меньше предыдущего значения рекорда R=12, то сохраняем прежнее значение текущего рекорда R=12, $x_1^{\rm rec}=3$, $x_2^{\rm rec}=2$.



Дерево вариантов (частных задач линейного программирования) полностью построены. Все вершины или закрыты или для них произведено ветвление. Оптимальным решением задачи являются параметры текущего рекордного решения на момент завершения построения дерева:

$$z_{\text{opt}} = 12$$
, $x_1^{\text{opt}} = 3$, $x_2^{\text{opt}} = 2$.

4. Индивидуальные задания

No	Задание	$N_{\underline{0}}$	Задание
1	$z = 2x_1 + 3x_2 \to \max;$	2	$z = 2x_1 + 3x_2 \to \max;$
	$2x_1 + x_2 \le 10;$		$2x_1 + x_2 \le 10;$
	$x_1 + 4x_2 \le 13;$		$x_1 + 3x_2 \le 13;$
	$x_1, x_2 \ge 0;$		$x_1, x_2 \ge 0;$
	$x_1, x_2 \in Z.$		$x_1, x_2 \in \mathbb{Z}.$
3	$z = 2x_1 + 4x_2 \to \max;$	4	$z = 2x_1 + 4x_2 \to \max;$
	$2x_1 + x_2 \le 10;$		$2x_1 + x_2 \le 9;$
	$x_1 + 3x_2 \le 13;$		$x_1 + 3x_2 \le 13;$
	$x_1, x_2 \ge 0;$		$x_1, x_2 \ge 0;$
	$x_1, x_2 \in Z.$		$x_1, x_2 \in \mathbb{Z}.$
5	$z = 3x_1 + 4x_2 \to \max;$	6	$z = 3x_1 + 4x_2 \to \max;$
	$2x_1 + x_2 \le 9;$		$2x_1 + x_2 \le 11;$
	$x_1 + 3x_2 \le 13;$		$x_1 + 3x_2 \le 13;$
	$x_1, x_2 \ge 0;$		$x_1, x_2 \ge 0;$
	$x_1, x_2 \in Z.$		$x_1, x_2 \in \mathbb{Z}.$

$N_{\underline{0}}$	Задание	No॒	Задание
7	$z = 5x_1 + 4x_2 \to \max;$	8	$z = 5x_1 + 4x_2 \rightarrow \max;$
	$2x_1 + x_2 \le 11;$		$3x_1 + x_2 \le 11;$
	$x_1 + 3x_2 \le 13;$		$x_1 + 3x_2 \le 13;$
	$x_1, x_2 \ge 0;$		$x_1, x_2 \ge 0;$
	$x_1, x_2 \in Z.$		$x_1, x_2 \in \mathbb{Z}.$
9	$z = 5x_1 + 4x_2 \to \max;$	10	$z = 5x_1 + 4x_2 \to \max;$
	$3x_1 + x_2 \le 14;$		$3x_1 + x_2 \le 14;$
	$x_1 + 3x_2 \le 13;$		$x_1 + 4x_2 \le 13;$
	$x_1, x_2 \ge 0;$		$x_1, x_2 \ge 0;$
	$x_1, x_2 \in Z.$		$x_1, x_2 \in Z.$
	$z = 2x_1 + 4x_2 \to \max;$		$z = 2x_1 + 4x_2 \to \max;$
	$3x_1 + x_2 \le 14;$		$3x_1 + x_2 \le 14;$
11	$x_1 + 4x_2 \le 13;$	12	$x_1 + 4x_2 \le 15;$
	$x_1, x_2 \ge 0;$		$x_1, x_2 \ge 0;$
	$x_1, x_2 \in Z.$		$x_1, x_2 \in Z.$
13	$z = 2x_1 + 3x_2 \to \max;$	14	$z = 2x_1 + 3x_2 \to \max;$
	$3x_1 + x_2 \le 14;$		$3x_1 + 2x_2 \le 17;$
	$x_1 + 4x_2 \le 15;$		$x_1 + 4x_2 \le 15;$
	$x_1, x_2 \ge 0;$		$x_1, x_2 \ge 0;$
	$x_1, x_2 \in Z.$		$x_1, x_2 \in Z$.
15	$z = 4x_1 + 3x_2 \to \max;$	16	$z = 4x_1 + 3x_2 \to \max;$
	$3x_1 + 2x_2 \le 17;$		$3x_1 + 2x_2 \le 19;$
	$x_1 + 4x_2 \le 15;$		$x_1 + 4x_2 \le 15;$
	$x_1, x_2 \ge 0;$		$x_1, x_2 \ge 0;$
	$x_1, x_2 \in Z.$		$x_1, x_2 \in Z.$

$N_{\underline{0}}$	Задание	№	Задание
17	$z = 4x_1 + 3x_2 \to \max;$	18	$z = 4x_1 + 2x_2 \to \max;$
	$3x_1 + 2x_2 \le 19;$		$3x_1 + 2x_2 \le 19;$
	$x_1 + 3x_2 \le 15;$		$x_1 + 3x_2 \le 15;$
	$x_1, x_2 \ge 0;$		$x_1, x_2 \ge 0;$
	$x_1, x_2 \in \mathbb{Z}.$		$x_1, x_2 \in \mathbb{Z}.$
19	$z = 4x_1 + 2x_2 \to \max;$	20	$z = 4x_1 + 3x_2 \to \max;$
	$3x_1 + 2x_2 \le 21;$		$3x_1 + 2x_2 \le 21;$
	$x_1 + 3x_2 \le 15;$		$x_1 + 3x_2 \le 15;$
	$x_1, x_2 \ge 0;$		$x_1, x_2 \ge 0;$
	$x_1, x_2 \in Z.$		$x_1, x_2 \in Z.$
	$z = 4x_1 + 3x_2 \to \max;$		$z = 4x_1 + 3x_2 \to \max;$
	$3x_1 + 2x_2 \le 23;$		$4x_1 + 2x_2 \le 23;$
21	$x_1 + 3x_2 \le 15;$	22	$x_1 + 3x_2 \le 15;$
	$x_1, x_2 \ge 0;$		$x_1, x_2 \ge 0;$
	$x_1, x_2 \in Z.$		$x_1, x_2 \in Z.$
	$z = 4x_1 + 5x_2 \to \max;$	24	$z = 4x_1 + 5x_2 \to \max;$
	$4x_1 + 2x_2 \le 23;$		$4x_1 + 2x_2 \le 24;$
23	$x_1 + 3x_2 \le 15;$		$x_1 + 3x_2 \le 15;$
	$x_1, x_2 \ge 0;$		$x_1, x_2 \ge 0;$
	$x_1, x_2 \in Z.$		$x_1, x_2 \in Z.$
25	$z = 2x_1 + 5x_2 \to \max;$	26	$z = 2x_1 + 5x_2 \to \max;$
	$4x_1 + 2x_2 \le 24;$		$4x_1 + 2x_2 \le 26;$
	$x_1 + 3x_2 \le 15;$		$x_1 + 3x_2 \le 15;$
	$x_1, x_2 \ge 0;$		$x_1, x_2 \ge 0;$
	$x_1, x_2 \in Z.$		$x_1, x_2 \in Z.$

5. Контрольные вопросы

- 1. Как осуществляется ветвление выбранной частной задачи линейного программирования в дереве задач?
- 2. Какова политика ветвления, то есть, какая незакрытая вершина дерева задач выбирается для ветвления на очередном шаге?
- 3. Что такое текущий рекорд в алгоритме ветвей и границ и как он формируется?
- 4. Как находится искомое оптимальное решение данной целочисленной задачи линейного программирования после завершения работы алгоритма ветвей и границ?
- 5. Какие частные задачи являются листьями окончательного дерева задач в методе ветвей и границ?
- 6.В каких случаях определенная частная задача закрывается в ходе работы алгоритма метода ветвей и границ?