Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Емельянов Сергей Геннадьевич

Должность: ректор

Дата подписания: 01.02.2021 17:06:14

Уникальный программный ключ:

МИНОБРНАУКИ РОССИИ

9ba7d3e34c012eba476ffd2d064cf2781953be730df2374d16f3c0ce536f0fc6 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Юго-Западный государственный университет» (ЮЗГУ)

Кафедра высшей математики

1	1 1	ю учебной работе Е.А.Кудряшов
		2л к. гудришог 2011 г.

ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ МНОЖЕСТВ

Индивидуальные задания к модулю 1.1 для студентов технических специальностей УДК 510.222 ББК 22.1

Составители: Т.В. Шевцова, Е.В. Скрипкина

Рецензент Кандидат технических наук, доцент *Е.В. Журавлева*

Основные понятия теории множеств: индивидуальные задания к модулю 1.1 / Юго-Зап. гос. ун-т; сост.: Т.В. Шевцова, Е.В. Скрипкина. Курск, 2011. 54 с. табл. Библиогр.: с. 54.

В данной работе содержатся теоретические упражнения и практические задания по наивной теории множеств. Предназначено для студентов технических специальностей и направлений подготовки

Текст печатается в авторской редакции

Подписано в печать ______. Формат 60х84 1/16. Усл. печ. л. 3,1. Уч.-изд. л. 2,8. Тираж 50 экз. Заказ_____. Бесплатно. Юго-Западный государственный университет. 305040 Курск, ул. 50 лет Октября, 94.

Содержание

Введение	
Индивидуальные задания	5
Теоретические упражнения	5
Практические задания	7
Задание 1	7
Задание 2	12
Задание 3	16
Задание 4	18
Задание 5	21
Задание 6	24
Задание 7	29
Задание 8	30
Задание 9	33
Задание 10	36
Задание 11	38
Задание 12	40
Задание 13	42
Задание 14	50
Задание 15	51
Список рекомендуемой литературы	54

Введение

Теория множеств образует фундамент различных математических дисциплин, что и обосновывает актуальность формирования знаний и умений студентов в этом направлении.

Данная методическая разработка предназначена для организации самостоятельной работы студентов технических специальностей и направлений подготовки, изучающих теорию множеств в качестве отдельной дисциплины или как раздел в курсах алгебры и теории чисел, математического анализа, дискретной математики.

Разработка является составной частью рейтинговой интенсивной технологии модульного обучения, действующей в Юго-Западном государственном университете.

Целью разработки является выдача заданий студентам по следующим темам:

- ✓ Элементы математической логики,
- ✓ Задание множеств,
- ✓ Понятие элемента и подмножества данного множества,
- ✓ Операции над множествами и их свойства,
- ✓ Метод математической индукции.

Разработку можно использовать при выполнении домашних заданий, а также при подготовке к экзамену в стандартной форме или в форме ФЭПО.

В каждом задании предложено 40 вариантов задач, выбор варианта осуществляется согласно номеру n в журнале

Выполнение работы разделяется по трем уровням сложности.

Уровень	Теоретические	Практические
сложности	упражнения	задания
Первый	Под номером п	1(1), 2(1), 3, 4, 5, 6, 7, 10
Второй	Под номером п	1-10, 13, 15
Третий	Под номером п	Bce

Выбранный уровень влияет на общее количество баллов, получаемых за модуль.

При выполнении модуля студентам рекомендуется воспользоваться списком литературы, приведенным в конце настоящей разработки.

Индивидуальные задания

Теоретические упражнения

- 1. Доказать, что k-элементное множество имеет 2^k подмножеств.
- 2. Доказать, что \emptyset ≠ { \emptyset }.
- 3. Доказать коммутативность операции пересечения множеств.
- 4. Доказать коммутативность операции объединения множеств.
- 5. Доказать коммутативность симметрической разности множеств.
- 6. Доказать ассоциативность операции пересечения множеств.
- 7. Доказать ассоциативность операции объединения множеств.
- 8. Доказать ассоциативность симметрической разности множеств.
- 9. Доказать дистрибутивность пересечения множеств относительно объединения
- 10. Доказать дистрибутивность объединения множеств относительно пересечения.
- 11. Доказать дистрибутивность пересечения множеств относительно симметрической разности.
- 12. Доказать дистрибутивность объединения множеств относительно симметрической разности.
- 13. Доказать эквивалентность следующих утверждений $A \subset B$ и $A \cup B = B$.
- 14. Доказать эквивалентность следующих утверждений: $A \subset B$ и $A \cap B = A$.
- 15. Доказать эквивалентность следующих утверждений: $A \subset B$ и $A \setminus B = \emptyset$.
- 16. Доказать эквивалентность следующих утверждений: $A \subset B$ и $\overline{A} \cup B = U$, где U универсальное множество.
- 17. Доказать эквивалентность следующих утверждений: $A \subset B$ и $A \cap \overline{B} = \emptyset$.
- 18. Доказать свойство разности множеств: $A \setminus B = A \cap \overline{B}$.
- 19. Доказать свойство симметрической разности множеств: $A\Delta B = (A \cup B) \setminus A \cap B$.

- 20. Доказать закон де Моргана: $C \setminus (A \cup B) = (C \setminus A) \cap (C \setminus B)$.
- 21. Доказать закон де Моргана: $C \setminus (A \cap B) = (C \setminus A) \cup (C \setminus B)$.
- 22. Доказать следствие закона де Моргана $\overline{A \cup B} = \overline{A} \cap \overline{B}$.
- 23. Доказать следствие закона де Моргана: $\overline{A \cap B} = \overline{A} \cup \overline{B}$.
- 24. Доказать закон инволюции для множества: A = A.
- 25. Доказать свойство идемпотентности для множества A: $A \cup A = A$, $A \cap A = A$.
- 26. Доказать свойства пустого множества: $A \cup \emptyset = A$, $A \cap \emptyset = \emptyset$.
- 27. Доказать свойства универсального множества: $A \cup U = U$, $A \cap U = A$.
- 28. Доказать свойства абсолютного дополнения множества: $A \cup \overline{A} = U$, $A \cap \overline{A} = \emptyset$.
- 29. Доказать свойства абсолютного дополнения: $\overline{U} = \emptyset$, $\overline{\emptyset} = U$.
- 30. Выразить объединение множеств A и B через пересечение и симметрическую разность.
- 31. Выразить пересечение множеств A и B через объединение и симметрическую разность.
- 32. Выразить объединение множеств A и B через разность и симметрическую разность.
- 33. Выразить пересечение множеств A и B через разность и симметрическую разность.
- 34. Выразить разность множеств A и B через пересечение и симметрическую разность.
- 35. Выразить разность множеств A и B через объединение и симметрическую разность.
- 36. Выразить разность множеств A и B через пересечение и абсолютное дополнение.
- 37. Выразить разность множеств A и B через объединение и абсолютное дополнение.
- 38. Доказать, что объединение множеств A и B невозможно выразить через пересечение и разность.
- 39. Доказать, что разность множеств A и B невозможно выразить через объединение и пересечение.
- 40. Доказать, что мощность объединения конечных множеств A и B равна сумме мощностей этих множеств минус мощность пересечения этих множеств.

Практические задания

Задание 1.

Записать с помощью логических символов следующие высказывания и установить, истинны они или ложны.

Таблица 1.

n	Задания
1.	1) Модуль любого действительного числа положителен.
	2) Для любого вектора в пространстве найдется вектор
	пространства, который в сумме с ним дает нулевой вектор.
2.	1) Найдется единственное действительное число, квадрат которого равен 3.
	2) Для любой прямой на плоскости найдется прямая на плоскости, перпендикулярная ей.
3.	1) Существует единственное натуральное число, являющееся общим делителем чисел 6 и 9.
	2) Для любого действительного числа найдется действительное число, обратное ему.
4.	1) Существует целое число, кратное 5.
	2) Любое положительное действительное число есть квадратный корень некоторого действительного числа.
5.	1) Найдется единственное положительное действительное число, квадрат которого равен 3.
	2) Существует натуральное число, которое в сумме с любым действительным числом дает это (то есть второе) число.
6.	1) Существует единственное действительное число, синус которого равен 1.
	2) Для любых двух натуральных чисел найдется натуральное число, равное их разности.
7.	1) Существует единственное натуральное число, являющееся общим делителем чисел 4 и 9.
	2) Для любого рационального числа найдется рациональное число, которое в произведении с ним дает 1.

n	Задания
8.	1) Найдется единственное действительное число, квадрат которого равен 3.
	2) Для любой прямой на плоскости найдется параллельная ей прямая на плоскости.
9.	1) Квадрат любого действительного числа равен 3.
	2) Для любого целого числа найдется единственное целое число, которое в сумме с ним дает 0.
10.	1) Существует натуральное число, являющееся общим делителем чисел 6 и 9.
	2) Для любых двух целых чисел найдется целое число, равное их полусумме.
11.	1) Найдется целое число, которое больше 2, но меньше 3.
	2) Для любого действительного числа найдется действительное число, равное его арифметическому квадратному корню.
12.	1) Существует натуральное число, являющееся общим делителем чисел 4 и 9.
	2) Для любого натурального числа найдется натуральное число, которое в сумме с ним дает 0.
13.	1) Найдется рациональное число, квадрат которого равен 4.
	2) Для любого действительного числа найдется единственное действительное число, которое в сумме с ним дает 0.
14.	1) Модуль любого натурального числа положителен.
	2) Для любого действительного числа из промежутка [-1; 1] найдется единственное действительное число, равное арксинусу этого числа.
15.	1) Существует действительное число, синус которого равен 1.
	2) Для любых двух рациональных чисел найдется рациональное число, равное частному от деления первого числа на второе.

n	Задания
16.	1) Найдется рациональное число, квадрат которого равен 3.
	2) Для любого действительного числа найдется действительное число, обратное ему.
17.	1) Найдется целое число, квадрат которого равен 0.
	2) Для любого действительного числа найдется действительное число, равное его кубическому корню.
18.	1) Существует действительное число, синус которого равен $\sqrt{3}$.
	2) Для любого целого числа найдется целое число, которое в сумме с ним дает 0.
19.	1) Существует действительное число, модуль которого не является положительным.
	2) Для любого рационального, отличного от нуля числа найдется рациональное число, обратное ему.
20.	1) Найдется действительное число, квадрат которого равен - 1.
	2) Для любого целого числа, отличного от нуля, найдется целое число, которое в произведении с ним дает 1.
21.	1) Произведение двух любых действительных отрицательных чисел положительно.
	2) Существует действительное число, которое при умножении на любое действительное число дает 0.
22.	1) Существует натуральное число, модуль которого не является положительным.
	2) Для любого рационального числа найдется рациональное число, равное его кубическому корню.
23.	1) Существует действительное число, тангенс которого равен 2.
	2) Для любого натурального числа найдется натуральное число, обратное ему.

n	Задания
24.	1) Любое целое число кратно 5. 2) Существует действительное число, которое в сумме с любым действительным числом дает это (то есть второе) число.
25.	1) Модуль любого действительного числа неотрицателен. 2) Для любого целого числа найдется целое число, в два раза меньшее его.
26.	1) Найдутся действительные числа, сумма которых отрицательна, а произведение положительно. 2) Для любого действительного числа из промежутка [-1; 1] найдется действительное число, равное арксинусу этого числа.
27.	1) Найдется рациональное число, квадрат которого равен 4. 2) Для любого действительного числа найдется действительное число, противоположное ему.
28.	1) Существует единственное целое число, кратное 5. 2) Для любого рационального числа найдется рациональное число, которое в произведении с ним дает 1.
29.	1) Найдется натуральное число, куб которого равен 0. 2) Для любого отрицательного целого числа найдется большее его отрицательное целое число.
30.	1) Существует единственное действительное число, котангенс которого равен 1. 2) Для любого действительного числа найдется действительное число, меньшее его.
31.	1) Найдется действительное число, большее 2, но меньшее 3. 2) Существует натуральное число, которое при умножении на любое действительное число дает 0.
32.	1) Любое натуральное число больше 1. 2) Для любого действительного числа найдется действительное число, равное арксинусу этого числа.

n	Задания
33.	1) Сумма двух четных чисел есть четное число.
	(Множество четных чисел обозначают 2Z)
	2) Для любого действительного числа найдется действительное число, которое в произведении с ним дает отрицательное число.
34.	1) Найдутся действительные числа, сумма которых положительна, а произведение отрицательно.
	2) Для любого целого числа найдется единственное целое число, противоположное ему.
35.	1) Найдется действительное число, куб которого равен -1.
	2) Для любого натурального числа найдется натуральное число, меньшее его.
36.	1) Существует действительное число, тангенс которого равен 1.
	2) Для любого рационального числа, отличного от нуля, найдется рациональное число, в два раза меньшее его.
37.	1) Найдется натуральное число, меньшее 1.
	2) Для любого отрицательного действительного числа найдется большее его отрицательное действительное число.
38.	1) Сумма двух любых действительных отрицательных чисел отрицательна.
	2) Для любого натурального числа найдется натуральное число, противоположное ему.
39.	1) Найдется действительное число, кратное 6 и 8.
	2) Для любых двух векторов на плоскости существует вектор, равный их разности.
40.	1) Найдется единственное действительное число, кратное числу 6 и числу 8.
	2) Для любого действительного числа найдется действительное число, которое в сумме с ним дает отрицательное число.

Задание 2.

Описать приведенные ниже высказывания и установить, истинны они или ложны.

Таблица 2.

n	Задания
1.	$1) \ \forall x \in N(x + \frac{1}{x} \ge 2)$
	$2) \ \forall \ x \in R \ \exists \ y \in R \ (x \cdot y = 1)$
2.	$1) \ \forall x, y \in N(x+y>0)$
	$2) \exists ! y \in R \ \forall \ x \in R \ (x \cdot y = 0)$
3.	$1) \exists ! x \in R (tg \ x = 0)$
	$2) \ \forall x \in N \ \exists \ y \in N \ (y < x)$
4.	$1) \exists ! x \in R(x+1=\frac{6}{x})$
	$2) \ \forall \ x \in R \ \exists \ y \in R \ (x + y = 0)$
5.	$1) \ \forall x \in R(x > 0)$
	$2) \exists y \in N \forall x \in R(x \cdot y = 0)$
6.	1) $\exists x \in R(x^2 = 100)$
	$2) \ \forall x \in R \exists ! y \in R (y < x)$
7.	1) $\forall x, y \in 2Z (x - y \in 2Z)$
	(2Z – обозначение множества четных чисел)
	$2) \ \forall \ x \in R \ \exists \ y \in R \ (\ y < x)$
8.	$1) \ \forall x, y \in N (x \cdot y > 0)$
	$2) \ \forall x, y \in N \ \exists z \in N \ (z = x - y)$
9.	1) $\exists ! x \in [0; \pi] (\cos x = 1/2)$
	2) $\forall x \in V \exists y \in V (y = 2x)$, где V – множество векторов на
1.0	плоскости
10.	1) $\exists x \in Z (x = 5k, z \partial e k \in Z)$
	$2) \exists x \in N \forall y \in R(x+y=y)$

n	Задания
11.	$1) \exists ! x \in N \left(x + \frac{1}{x} = 2 \right)$
	$\begin{cases} x \\ 2) \ \forall \ x \in R \setminus \{0\} \ \exists \ y \in R \ (x \cdot y = 2) \end{cases}$
12.	1) $\forall x \in N(x > 0)$
	$2) \exists ! \vec{x} \in V \ \forall \vec{y} \in V (\vec{x} + \vec{y} = \vec{y}),$
10	где V – множество векторов на плоскости
13.	$1) \exists x \in R(\cos x = 1)$
1.4	$2) \ \forall x \in Q \exists y \in N (y < x - 1)$
14.	$1) \ \exists x \in N(x < 1)$
	$2) \ \forall x \in Z \exists ! y \in Z (x + y = 0)$
15.	1) $\exists ! x \in R(x + \frac{1}{x} = -2)$
	$2) \ \forall \overrightarrow{x} \in V \ \exists \overrightarrow{y} \in V \ (\overrightarrow{y} \uparrow \uparrow \overrightarrow{x}),$
	где V – множество векторов на плоскости
16.	$1) \exists ! x \in R(x = 0)$
	$2) \ \exists x \in R \ \forall \ y \in R (x \cdot y = y)$
17.	$1) \exists ! x \in N(x+1=\frac{6}{x})$
	$2) \ \forall x \in N \ \exists \ y \in N \ (x + y = 0)$
18.	1) $\exists ! x \in R(4^x < 16)$
	$2) \exists x \in Q \forall y \in Q(y : x = 2y)$
19.	$1) \exists ! x \in R \ (\cos x = 1/2)$
	$2) \ \forall x, y \in N \ \exists \ z \in N \ (z = x \cdot y)$
20.	$1) \ \exists x \in R (tg \ x > 1)$
	$2) \exists \overrightarrow{x} \in V \forall \overrightarrow{y} \in V (\overrightarrow{x} + \overrightarrow{y} = \overrightarrow{y}),$
	где V – множество векторов на плоскости

n	Задания
21.	1) $\exists ! x \in N(x^2 = 100)$
	$2) \ \forall \ x \in N \ \exists \ y \in N \ (\ y < x)$
22.	$1) \exists ! x \in N(x < 2)$
	$2) \ \forall x, y \in R \exists z \in R (z = x : y)$
23.	$1) \ \forall \ x \in R \ (x \ge 0)$
	$2) \exists ! x \in R \ \forall \ y \in R(x \cdot y = y)$
24.	$1) \exists ! x \in R (\cos x = 1)$
	$2) \exists \vec{x} \in V \ \forall \vec{y} \in V (\vec{x} \uparrow \uparrow \vec{y}),$
	где V – множество векторов на плоскости
25.	1) $\exists ! x \in N(4^x < 16)$
	$2) \ \forall \ x \in R \ \exists \ y \in R \ (x \cdot y = 2)$
26.	1) $\forall x \in (0; +\infty) (\log_2 x \ge 0)$
	$2) \ \exists x \in R \ \forall \ y \in R \ (x + y = 0)$
27.	$1) \ \exists x \in R (tg \ x = 1)$
	$2) \ \forall \overrightarrow{x} \in V \ \exists ! \overrightarrow{y} \in V \ (\overrightarrow{y} \uparrow \uparrow \overrightarrow{x}),$
	где V – множество векторов на плоскости
28.	$1) \ \forall x \in Q(x^4 > 0)$
	$2) \ \forall x, y \in Z \exists z \in Z (z = x - y)$
29.	1) $\forall x, y \in 2Z + 1(x + y \in 2Z + 1)$
	(2Z+1-обозначение множества нечетных чисел)
2.0	$2) \exists x \in Q \forall y \in Q (y : x = 5y)$
30.	$1) \ \exists x \in N (4^x = 2)$
	$2) \ \forall \overrightarrow{x} \in V \ \exists \overrightarrow{y} \in V \ (\overrightarrow{x} + \overrightarrow{y} = \overrightarrow{0}),$
	где V – множество векторов на плоскости
31.	$1) \exists x \in Q \ (4^x = 2)$
	$2) \ \exists x \in R \ \forall \ y \in R (x \cdot y = 0)$

n	Задания
32.	1) $\exists ! x \in R(x^2 = 100)$
	$2) \ \forall x, y \in 2Z + 1(x - y \in 2Z)$
	(2Z+1-обозначение множества нечетных чисел,
	2Z – обозначение множества четных чисел)
33.	1) $\exists ! x \in N(4^x < 16)$
	2) $\forall \overrightarrow{x} \in V \exists \overrightarrow{y} \in V(\overrightarrow{y} \uparrow \downarrow \overrightarrow{x}),$
	где V – множество векторов на плоскости
34.	$1) \ \forall x, y \in 2Z + 1(x + y \in 2Z)$
	(2Z+1-обозначение множества нечетных чисел,
	2Z – обозначение множества четных чисел)
	$2) \exists x \in R \forall y \in R (x + y = y)$
35.	$1) \ \forall x, y \in N \ (x - y \in N)$
	2) $\forall x, y \in V \exists z \in V (z = x - y),$
	где V – множество векторов на плоскости
36.	$1) \ \forall x \in R(x^4 \ge 0)$
	2) $\forall x, y \in N \exists z \in N (z = x : y)$
37.	1) $\forall x, y \in 5Z (x + y \in 5Z)$
	(5Z-обозначение множества чисел, кратных $5)$
	2) $\forall x, y \in (0; +\infty) \exists z \in R (z = x : y)$
38.	$1) \ \exists x \in R(\cos x > 1)$
	2) $\forall x, y \in R \exists z \in R (z = (x + y) : 2)$
39.	$1) \ \forall x, y \in 2Z + 1(x \cdot y \in 2Z + 1)$
	(2Z+1-обозначение множества нечетных чисел)
1.0	$2) \ \forall x \in Z \ \exists \ y \in Z \ (x + y = 0)$
40.	$1) \exists x \in N(x = 0)$
	2) $\forall x, y \in V \exists z \in V (z = x + y),$
	где V – множество векторов на плоскости

Задание 3.

Множество A задано словесно. Задать это множество перечислением элементов (в случае, если множество A конечно) и указанием характеристического свойства.

Таблица 3.

n	Задание
1.	A – множество корней уравнения $x - \frac{2}{x} = 1$
2.	A — множество цифр числа 13225
3.	A – множество целых решений неравенства $\frac{x^2 - 3x - 4}{x^2} \le 0$
4.	A – множество всех делителей числа 24
5.	A — множество чисел, не превышающих число 200 и являющихся натуральными степенями двойки $(2, 4, 8,)$
6.	A- множество корней уравнения $ 2x-1 =3$
7.	A — множество всех чисел из промежутка $[0; 2\pi]$, синус которых равен $0,5$
8.	A – множество решений неравенства $(x-3)^2(x+2)^4 \le 0$
9.	A — множество нечетных чисел из промежутка (-5; 4)
10.	А – множество всех простых однозначных чисел
11.	A – множество корней уравнения $\log_2(x^2-1)=3$
12.	A — множество всех трехзначных чисел, в записи которых встречаются цифры 0 и 1
13.	А – множество букв слова "интернет"
14.	A — множество корней уравнения $2^{x^2-1} = 8$
15.	A — множество положительных чисел, не превышающих 50 и кратных 6
16.	A — множество всех трехзначных чисел, в записи которых встречаются цифры 7 и 8
17.	A — множество всех двузначных чисел, в записи которых встречаются цифры 1, 4, 7
18.	A — множество целых решений неравенства $0.25 \le 4^x \le 64$

n	Задание
19.	А – множество всех двузначных чисел, в которых число
	десятков равно числу единиц
20.	A — множество цифр числа 572375
21.	A — множество целых решений неравенства $x^2 + x \le 6$
22.	A — множество неотрицательных корней уравнения $x^3 - x = 0$
23.	A – множество всех делителей числа 18
24.	A — множество всех чисел из промежутка $[0; 2\pi]$, косинус которых равен 0 .
25.	A — множество целых решений неравенства $x ≥ x^2$
26.	А – множество чисел, являющихся натуральными степенями тройки (3, 9, 27,) и не превышающих число 250
27.	A — множество целых решений неравенства — x^2 + 4 x + 5 ≥ 0
28.	А – множество всех однозначных составных чисел
29.	A — множество положительных четных чисел, меньших 12
30.	A — множество целых корней уравнения $2x^3 - x^2 - x = 0$
31.	A — множество букв слова "сессия"
32.	A — множество всех двузначных чисел, для которых число десятков в 2 раза больше числа единиц
33.	A — множество целых решений неравенства $x^2 < 9$
34.	A — множество всех согласных букв слова "обороноспособность"
35.	A — множество корней уравнения $x^3 - x = 0$
36.	A — множество всех чисел из промежутка $[0; 2\pi]$, тангенс которых равен 1 или — 1.
37.	A — множество положительных чисел, не превышающих 50 и кратных 7
38.	A — множество всех делителей числа 20
39.	A — множество всех двузначных чисел, в записи которых встречаются цифры 2, 5, 9
40.	A — множество корней уравнения $x^3 + x^2 - 6x = 0$

Задание 4.

Множество A задано порождающей процедурой. В случае, если множество A является конечным, задать его перечислением элементов. В случае, если множество A является бесконечным, записать только пять его элементов.

Таблица 4.

n	Задание
1.	$1)-3 \in A$,
	2) Если $a \in A$, то $(3-a) \in A$
2.	1) $0 \in A$,
	2) Если $a \in A$, то $2^a \in A$
3.	1) $2 \in A$,
	2) Если $a \in A$, то $\frac{4-a}{a-1} \in A$
4.	1) $1 \in A, 2 \in A$
	2) Если $a,b \in A$, то $a \cdot b \in A$
5.	1) $0 \in A$,
	2) Если $a \in A$, то $\sin a \in A$
6.	Если $k \in \mathbb{Z}$, то $\pi k \in A$
7.	1) $5 \in A$,
	2) Если $a \in A$, то $\pm a^{-1} \in A$
8.	1) $1 \in A, 2 \in A$
	2) Если $a,b \in A$, то $\frac{a}{b} \in A$
9.	1) $3 \in A, -3 \in A$
	2) Если $a \in A$, то $(1-a) \in A$
10.	1) $0 \in A$,
1.1	2) Если $a \in A$, то $a + 2 \in A$
11.	(1) $-1 \in A$,
10	2) Если $a \in A$, то $a^2 \in A$
12.	1) $1 \in A$,
13.	2) Если $a \in A$, то $3a \in A$ 1) $16 \in A$,
13.	(a) Если $a \in A$ и $a \neq 0$, то $\log_2 a \in A$
	2) Lenin $u \in \Pi$ in $u \neq 0$, to $1052u \in \Pi$

n	Задание
14.	1) 2 ∈ <i>A</i>
	2) Если $a \in A$, то $\sqrt[3]{a} \in A$
15.	1) $2 \in A$,
	2) Если $a \in A$, то $\pm 2 \cdot a^{-1} \in A$
16.	$1) 1 \in A, 2 \in A$
	2) Если $a,b \in A$, то $a+b \in A$
17.	$(1) - 9 \in A$,
1.0	2) Если $a \in A$, то $(9-a) \in A$
18.	Если $k \in \mathbb{Z}$, то $\frac{\pi}{4} + 2\pi k \in A$
19.	1) $3 \in A, -3 \in A$
	2) Если $a \in A$, то $\frac{3}{a} \in A$
20.	1) $1 \in A, 2 \in A$
	2) Если $a,b \in A$, то $a^b \in A$
21.	$1)-2\in A$,
	2) Если $a \in A$, то $(3-a) \in A$
22.	1) $1 \in A, 2 \in A$
	2) Если $a,b \in A$, то $(a-b) \in A$
23.	$1) -0.5 \in A$
	2) Если $a \in A$, то $\frac{1}{2a} \in A$
24.	1) $2 \in A$,
	2) Если $a \in A$, то $\frac{3}{a} \in A$
25.	1) $1 \in A$,
	2) Если $a \in A$, то $\frac{2-a}{a} \in A$
26.	1) $0 \in A$,
	2) Если $a \in A$, то $a - 3 \in A$
27.	1) $3 \in A, 4 \in A$
	2) Если $a \in A$, то $-\frac{1}{a} \in A$

n	Задание
28.	1) 2 ∈ <i>A</i>
	2) Если $a \in A$, то $\sqrt{a} \in A$
29.	1) $3 \in A$,
	2) Если $a \in A$, то $(3-a) \in A$
30.	1) $5 \in A$,
	2) Если $a \in A$, то $\frac{2}{a} \in A$
31.	1) $3 \in A$,
	2) Если $a \in A$, то $\pm \frac{3}{a} \in A$
32.	Если $k \in \mathbb{Z}$, то $\frac{\pi}{2} + \pi k \in A$
33.	1) $0,1 \in A, 0,2 \in A$
	2) Если $a \in A$, то $-\frac{1}{a} \in A$
34.	1) $1 \in A$,
	2) Если $a \in A$, то $\frac{a}{2} \in A$
35.	1) $3 \in A$,
	2) Если $a \in A$, то $(1-a) \in A$
36.	$1)-2\in A$,
	2) Если $a \in A$, то $\frac{3}{a} \in A$
37.	1) $-0,1 \in A, -0,2 \in A$
	2) Если $a \in A$, то $\frac{1}{a} \in A$
38.	1) 1 ∈ <i>A</i>
	2) Если $a \in A$, то $3^a \in A$
39.	1) $0 \in A$,
	2) Если $a \in A$, то $tga \in A$
40.	1) $2 \in A$,
	2) Если $a \in A$, то $a^2 \in A$

Задание 5.

Для данного множества A указать, какие из приведенных утверждений верны и почему.

Таблица 5.

n	Задание
1.	$A = \{a, b, \{c\}\}$
	1) $\{c\} \in A$ или 2) $\{c\} \subset A$
2.	$A = \{a, b, \{c\}\}$
	1) $\{a,b\}$ \subset A или 2) $\{a,b\}$ $\not\subset$ A
3.	$A = \{a, b, \{c\}\}$
	1) $a \in A$ или 2) $\{a\} \in A$
4.	$A = \{a, b, \{c\}\}$
	1) $\{a\} \subset A$ или 2) $\{a\} \not\subset A$
5.	$A = \{a, b, \{c\}\}$
	1) $a \subset A$ или 2) $a \in A$
6.	$A = \{a, b, \{c\}\}$
	1) $\{a,b\}$ \subset A или 2) $\{a,b\}$ \in A
7.	$A = \{a, b, \{c\}\}$
	1) $\{a,b,\{c\}\}\subset A$ или 2) $\{a,b,\{c\}\}\not\subset A$
8.	$A = \{a, b, \{c\}\}$
	1) $\{b\} \subset A$ или 2) $\{b\} \not\subset A$
9.	$A = \{a, b, \{c\}\}$
	1) $b \in A$ или 2) $\{b\} \in A$
10.	$A = \{a, b, \{c\}\}$
	1) $c \in A$ или 2) $\{c\} \in A$
11.	$A = \{a, b, \{c\}\}$
	1) $\{\emptyset\} \subset A$ или 2) $\emptyset \subset A$
12.	$A = \{a, b, \{c, d\}, \varnothing\}$
	1) $\{c,d\} \in A$ или 2) $\{c,d\} \subset A$

n	Задание
13.	$A = \{a, b, \{c, d\}, \varnothing\}$
	1) $\{a\} \subset A$ или 2) $\{a\} \not\subset A$
14.	$A = \{a, b, \{c, d\}, \varnothing\}$
	1) $\{a,b\} \subset A$ или 2) $\{a,b\} \in A$
15.	$A = \{a, b, \{c, d\}, \varnothing\}$
	1) $\{a,b\}$ \subset A или 2) $\{a,b\}$ $\not\subset$ A
16.	$A = \{a, b, \{c, d\}, \varnothing\}$
	1) $b \in A$ или 2) $\{b\} \in A$
17.	$A = \{a, b, \{c, d\}, \varnothing\}$
	1) $\{c,d\} \in A$ или 2) $\{c\} \in A$
18.	$A = \{a, b, \{c, d\}, \varnothing\}$
	1) $\{a,c\}\subset A$ или 2) $\{a,c\}\not\subset A$
19.	$A = \{a, b, \{c, d\}, \varnothing\}$
	1) $\{a,\{c,d\}\}\subset A$ или 2) $\{a,\{c,d\}\}\not\subset A$
20.	$A = \{a, b, \{c, d\}, \varnothing\}$
	1) $\{\{a,b\},\{c,d\}\}\subset A$ или 2) $\{\{a,b\},\{c,d\}\}\not\subset A$
21.	$A = \{a, b, \{c, d\}, \varnothing\}$
	$\{a,\varnothing\}$ \subset A или $\{a,\varnothing\}$ \subset A
22.	$A = \{a, b, c, \{\varnothing\}\}\$
	1) $\{c,\varnothing\}\subset A$ или 2) $\{c,\varnothing\}\not\subset A$
23.	$A = \{a, b, c, \{\varnothing\}\}\$
2.1	$1) \{\varnothing\} \subset A$ или $2) \{\varnothing\} \in A$
24.	$A = \{a, b, c, \{\varnothing\}\}$
25	1) $\emptyset \subset A$ или 2) $\emptyset \in A$
25.	$A = \{a, b, c, \{\emptyset\}\}$
26	1) $\{c, \{\emptyset\}\} \subset A$ или 2) $\{c, \{\emptyset\}\} \not\subset A$
20.	$A = \{a, b, c, \{\emptyset\}\}$
	$\{a,b\}$ \subset A или 2) $\{a,b\}$ $\not\subset$ A

n	Задание
27.	$A = \{\{a\}, \{b, c\}\}$
	1) $\{a\} \subset A$ или 2) $\{\{a\}\} \not\subset A$
28.	$A = \{\{a\}, \{b, c\}\}$
	1) $\{a\} \subset A$ или 2) $\{a\} \in A$
29.	$A = \{\{a\}, \{b, c\}\}$
	1) $\{\{a\},\{b\}\}\subset A$ или 2) $\{\{a\},\{b\}\}\not\subset A$
30.	$A = \{\{a\}, \{b, c\}\}$
	1) $\{b,c\} \subset A$ или 2) $\{b,c\} \in A$
31.	$A = \{\{a\}, \{b, c\}\}$
	1) $\{a,b,c\}\subset A$ или 2) $\{a,b,c\}\not\subset A$
32.	$A = \{\{a\}, \{b, c\}\}$
	1) $\{a\} \in A$ или 2) $a \in A$
33.	$A = \{a, \{b, \varnothing\}\}$
	$\{a,\varnothing\}$ \subset A или 2) $\{a,\varnothing\}$ \subset A
34.	$A = \{a, \{b, \varnothing\}\}$
	1) $\{b,\varnothing\}\subset A$ или 2) $\{b,\varnothing\}\in A$
35.	$A = \{a, \{b, \varnothing\}\}$
	1) $\{a,b\}$ \subset A или 2) $\{a,b\}$ $\not\subset$ A
36.	$A = \{a, \{b, \varnothing\}\}$
	1) $\{a\} \in A$ или 2) $\{a\} \subset A$
37.	$A = \{\emptyset, \{a\}\}$
	$\{\emptyset\} \in A$ или $2)$ $\emptyset \in A$
38.	$A = \{\emptyset, \{a\}\}$
	1) $\{\emptyset,a\}\subset A$ или 2) $\{\emptyset,a\}\not\subset A$
39.	$A = \{\emptyset, \{a\}\}$
	1) $\{a\} \in A$ или 2) $\{a\} \subset A$
40.	$A = \{a, b, \{c, d\}, \varnothing\}$
	1) $\{\emptyset\} \in A$ или 2) $\emptyset \in A$

Задание 6. Сформулировать задачу на языке теории множеств и решить ее.

Таблица 6.

n	Задание
1.	Для студентов организованы факультативные курсы по следующим дисциплинам: алгебра, геометрия, математический анализ, теория вероятностей. Каждый студент может посещать любое количество факультативов или не посещать их вообще. Сколько существует способов выбора факультативов?
2.	Организация собирается закупить в большом количестве компьютеры в следующих магазинах: "Глобус", "Фит", "Салон 2116", "Технология +". Сколько существует способов совершить покупку?
3.	Некоторая обеспеченная дама доверяет только Сбербанку РФ, Росбанку и ВТБ 24. Сколько для нее существует способов хранить собственные сбережения?
4.	Сколько различных (по набору входящих камней) украшений можно сделать из рубина, изумруда и сапфира?
5.	Буфет может закупить в большом количестве следующие прохладительные напитки "Sprite", "Cola", "Fanta". Сколько существует способов осуществить покупку?
6.	Сколько цветочных композиций, отличающихся составом входящих цветов, можно сделать из гортензии, ромашки, дельфиниума и герберы?
7.	В курскую область приезжает представитель министерства здравоохранения и социального развития РФ. Он обязан посетить с проверкой хотя бы одно из следующих учреждений: больницу скорой медицинской помощи, областную клиническую больницу, детскую областную больницу, инфекционную больницу им. Н. Семашко. Сколько возможностей посещения для него существует?

n	Задание
8.	Сколько различных по составу блюд может приготовить, используя какие-то из следующих ингредиентов: яйца, авокадо, рыба, рис.
9.	Санаторий закупает в большом количестве соки следующих видов: яблочный, вишневый, виноградный и мультифрукт. Сколько различных наборов соков можно купить?
10.	Организаторы семинара должны закупить канцелярские товары. Это можно сделать в магазинах "Оптимист", "Буква", "Планета", "Информат". Сколько существует возможностей сделать покупки?
11.	Студентам 1 курса предлагают записаться в спортивную, танцевальную или художественную секцию. Студент может записаться сразу в несколько секций. Сколько существует способов сделать выбор?
12.	Студенческая столовая закупает в большом количестве чай следующих видов: Ahmad, Liston, Akbar. Сколько различных наборов чая можно купить?
13.	Для детского сада должны закупить игрушки. Это можно сделать в магазинах "Бегемот", "Непоседы", "Кенгуру", "Карапузик". Сколько существует возможностей сделать покупки?
14.	Сколько наборов конфет, различающихся составом входящих видов конфет, можно составить из следующих видов: «Ромашка», «Буревестник», «Птичье молоко»?
15.	Участникам экскурсии по городу Курску кроме обзорной экскурсии предлагается посетить Краеведческий музей, Музей археологии, Картинную галерею им. А. А. Дейнеки, планетарий. Экскурсанты могут посетить любое количество указанных мест, а могут отказаться от посещения вообще. Сколько всевозможных способов сделать выбор существует?

n	Задание
16.	Ресторан может закупить соки следующих видов: "Я", "Тонус", "Rich". Сколько существует способов осуществить покупку?
17.	Организация собирается закупить офисную мебель. Это можно сделать в следующих магазинах: "Юнитекс", "Три-Арт", "Никс +". Сколько существует способов совершить покупку?
18.	Банк Турции предоставляет возможности хранить сбережения в долларах, в евро, в турецких лирах. Сколько всевозможных способов может выбрать пользователь банка?
19.	Сколько различных по составу блюд может приготовить, используя какие-то из следующих ингредиентов: мясо, капуста, картофель?
20.	Сколько различных (по набору входящих камней) украшений можно сделать из алмаза, топаза, аквамарина и опала?
21.	Организация может закупить компьютеры в следующих магазинах: "Глобус", "Салон 2116", "Бис", "Технология +". Сколько существует способов совершить покупку?
22.	Организаторы олимпиады должны закупить в большом количестве канцелярские товары. Это можно сделать в магазинах "Канцторг", "Диво", "Апекс". Сколько существует возможностей сделать покупки?
23.	Некоторый обеспеченный мужчина доверяет только Сбербанку РФ, Курскпромбанку, Русьбанку и Сельхозбанку. Сколько для него существует способов хранить собственные сбережения?
24.	Кафе закупает соки следующих видов: "Любимый", "Добрый", "Фруктовый сад", "Привет". Сколько существует способов осуществить покупку?

n	Задание
25.	Студентам предлагают записаться в следующие спортивные секции: плавание, футбол, бокс. Студент может записаться сразу в несколько секций. Сколько существует способов сделать выбор?
26.	Компания собирается заказать офисную мебель. Это можно сделать в следующих организациях: "Все для офиса", "Мастер мебель", "Криптон", "Макси-стиль". Сколько существует способов совершить покупку?
27.	Студентам 1 курса предлагают записаться в театральную студию, психологический кружок, спортивную секцию. Студент может заниматься любым количеством видов деятельности. Сколько существует способов сделать выбор?
28.	Сколько различных по составу блюд может приготовить, используя какие-то из следующих ингредиентов: яйца, картофель, сыр, яблоко?
29.	Для студентов организованы факультативные курсы по следующим дисциплинам: алгебра, геометрия, математический анализ, теория вероятностей. Каждый студент обязан посещать хотя бы один факультатив. Сколько существует способов выбора факультативов?
30.	Организация собирается закупить в большом количестве компьютеры. Это можно сделать в следующих магазинах: "Динамика", "Бис", "Сфера". Сколько существует способов совершить покупку?
31.	Для детского сада закупают в большом количестве соки следующих видов: яблочный, персиковый и апельсиновый. Сколько различных наборов соков можно купить?
32.	Сколько различных (по набору входящих камней) украшений можно сделать из следующих драгоценных камней: александрит, берилл и рубин?

n	Задание
33.	Сколько цветочных композиций, отличающихся составом входящих цветов, можно сделать из гвоздик, хризантем и роз?
34.	Буфет может закупить в большом количестве прохладительные следующие напитки "Sprite", "Cola", "Fanta". Сколько существует способов осуществить покупку?
35.	Для студентов организованы факультативные курсы по математике, физике и программированию. Каждый студент обязан посещать хотя бы один факультатив. Сколько существует способов выбора факультативов?
36.	Для детского сада должны закупить в большом количестве игрушки. Это можно сделать в магазинах "Оптимист", "Маленький принц", "Детский мир", "Счастливый малыш". Сколько существует возможностей сделать покупки?
37.	Студенческая столовая закупает в большом количестве чай следующих видов: Майский, Принцесса Нури, Цейлонский. Сколько различных наборов чая может закупить студенческая столовая?
38.	Сколько цветочных композиций, отличающихся составом входящих цветов, можно сделать из амариллиса, астрамерии, ириса?
39.	Банк предоставляет возможности хранить сбережения в рублях, в долларах, в евро. Сколько всевозможных способов может выбрать пользователь банка?
40.	В рамках проведения недели мужества учащимся предлагается посетить Военно-исторический музей Курской битвы, Музей "Юные защитники Родины" и Мемориал павших. Экскурсанты могут посетить все указанные места, а могут только одно или два. Сколько всевозможных способов сделать выбор существует?

Задание 7. Для данных множеств A и B найти $A \cup B$, $A \cap B$, $A \setminus B$, $A \Delta B$, $A \times B$ Таблица 7.

n	Задание	n	Задание
1.	A = (-3;8), B = [1;11]	21.	A = (-12;8), B = [-10; 5]
2.	A = (-1, 6), B = [-1, 3]	22.	A = (-7;8), B = [-4;11]
3.	A = (-7;5), B = [0; 9]	23.	A = (11;15), B = [10; 29]
4.	A = (-6;5), B = [1;7]	24.	A = (-9; 6), B = [-11; 8]
5.	A = (-2,8), B = [-1,11]	25.	A = (7;18), B = [0;13]
6.	A = (-1; 5), B = [-1; 4]	26.	A = (6;28), B = [11;23]
7.	A = (-7; -1), B = [-9; 9]	27.	A = (14; 26), B = [-1; 31]
8.	A = (-3, 2), B = [-1, 11]	28.	A = (-7;5), B = [0; 9]
9.	A = (-11;6), B = [-9; 3]	29.	A = (-13;18), B = [-11;11]
10.	A = (-7;3), B = [-10; 9]	30.	A = (-9; 6), B = [-15; 3]
11.	A = (-5;5), B = [1; 9]	31.	A = (-7;5), B = [0; 9]
12.	A = (-13; 8), B = [-11; 11]	32.	A = (-15;5), B = [-20; 9]
13.	A = (-1;16), B = [-1;13]	33.	A = (-33;8), B = [-21; 6]
14.	A = (-17;15), B = [10;19]	34.	A = (-16; 6), B = [-12; 8]
15.	A = (-9;8), B = [-1;11]	35.	A = (-72;5), B = [-60; 3]
16.	A = (-1;16), B = [-1;13]	36.	A = (-3; 8), B = [1; 8]
17.	A = (-27;5), B = [-11; 9]	37.	A = (-1,6), B = [-5,3]
18.	A = (-17;5), B = [-10; 9]	38.	A = (-10; -5), B = [-8; -2]
19.	A = (-22;8), B = [-19; 11]	39.	A = (-27;3), B = [-16; -9]
20.	A = (-15; 6), B = [-11; 3]	40.	A = (-2;8), B = [1;17]

Задание 8. Для данных множеств A и B найти $A \cup B$ и $A \cap B$.

Таблица 8.

n	Задание
1.	A — множество делителей числа 15, B — множество делителей числа 20
2.	А – множество целых чисел, удовлетворяющих неравенству
	$x^2 + 4x < 5$, B — множество четных чисел из полученного
	интервала
3.	A — множество делителей числа 15, B — множество делителей числа 25
4.	A — множество коллинеарных векторов на плоскости, B —
	множество сонаправленных векторов
5.	A — множество натуральных чисел, меньших 10 , B —
	множество простых чисел
6.	А – множество целых чисел, удовлетворяющих
	неравенству $ x-8 < 3$, B – множество простых чисел из
	полученного интервала
7.	A — множество двузначных чисел, кратных 15, B — множество
	двузначных чисел, кратных 20
8.	A — множество двузначных чисел, кратных 15, B — множество
9.	двузначных чисел, кратных 25
9.	A — множество векторов на плоскости, модули которых равны, B — множество сонаправленных векторов
10.	A — множество сонаправленных векторов A — множество нечетных двухзначных, B — множество чисел
10.	от 1 до 100, содержащих цифру 5
11.	A — множество двузначных чисел, кратных 10, B — множество
11.	двузначных чисел, кратных 20
12.	A — множество целых чисел, удовлетворяющих неравенству
	$\left \frac{x^2 - 3x - 4}{x^2} \le 0 \right , B - \text{множество} \text{нечетных} \text{чисел},$
	удовлетворяющих этому же неравенству
13.	A — множество целых чисел, удовлетворяющих неравенству
	$x^2 + 4x < 5$, B — множество четных чисел из полученного
	интервала

n	Задание
14.	A — множество делителей числа 7, B — множество делителей числа 10
15.	A — множество натуральных чисел, не превышающих 15,
1.0	В – множество простых чисел
16.	$ A - $ множество целых чисел, удовлетворяющих неравенству $ x-2 \le 6$, $ B - $ множество положительных чисел,
	удовлетворяющих неравенству $ x-2 \le 6$
17.	A — множество натуральных чисел, меньших 10 , B — множество составных чисел
18.	A — множество чисел, кратных 5, B — множество четных чисел
19.	A — множество делителей числа 10 , B — множество делителей числа 20
20.	A — множество целых чисел, удовлетворяющих неравенству
	$x^2 < 16$, B – множество положительных чисел,
	удовлетворяющих этому же неравенству
21.	A — множество нечетных чисел, меньших 20, B — множество
	чисел, кратных 3
22.	A — множество целых чисел, удовлетворяющих неравенству
	$\left \frac{x^2 - 3x - 4}{x^2} \le 0 \right , B - \text{множество} \text{положительных} \text{чисел},$
	удовлетворяющих этому же неравенству
23.	A — множество натуральных чисел, меньших 20, B — множество простых чисел от 10 до 30
24.	A – множество целых чисел, удовлетворяющих
	неравенству $x^2 + x \le 6$, B — множество четных чисел,
	удовлетворяющих этому же неравенству
25.	A — множество нечетных чисел, меньших 30, B — множество
	двузначных чисел, кратных 9
26.	A — множество целых чисел, удовлетворяющих неравенству
	x-1 < 6, B – множество не отрицательных чисел из
	полученного интервала
27.	A — множество натуральных чисел, меньших 10, B —
	множество нечетных чисел, меньших 20

n	Задание
28.	А – множество целых чисел, удовлетворяющих неравенству
	$x^2 + 4x < 5$, B — множество нечетных чисел из полученного интервала
29.	A — множество делителей числа 18, B — множество делителей
	числа 12
30.	A — множество двузначных чисел, кратных 6, B — множество двузначных чисел, кратных 12
31.	А – множество целых чисел, удовлетворяющих неравенству
	$ x+2 \le 5$, B – множество отрицательных чисел,
	удовлетворяющих этому же неравенству
32.	A — множество нечетных чисел, меньших 30, B — множество
	чисел, образующих геометрическую прогрессию, первый член
22	которой 2, а сумма первых шести членов равна 242
33.	A — множество целых чисел, удовлетворяющих неравенству
	$x^2 < 10x$, B — множество составных чисел, удовлетворяющих
34.	этому же неравенству
34.	A — множество делителей числа 6, B — множество делителей числа 12
35.	A — множество целых чисел, удовлетворяющих неравенству
	$x^2 < 10$, B — множество не отрицательных чисел, удовлетворяющих этому же неравенству
36.	A — множество четных чисел, B — множество простых чисел
37.	А – множество целых чисел, удовлетворяющих
	неравенству $x^2 + x \le 6$, B – множество не положительных
	чисел, удовлетворяющих этому же неравенству
38.	A — множество двузначных чисел, кратных 8, B — множество двузначных чисел, кратных 12
39.	A — множество четных чисел, B — множество двухзначных
	чисел
40.	A — множество всех трехзначных чисел, B — множество чисел,
	образующих арифметическую прогрессию, первый член которой 99, а сумма первых пяти членов равна 525

Задание 9. Записать выражение для множества, выделенного на рисунке. Таблица 9.

n	Задание	n	Задание
1.		21.	A B C
2.		22.	
3.		23.	
4.		24.	$A \cup B \cup C$
5.		25.	
6.		26.	$A \subset B$

n	Задание	n	Задание
7.	$A \cap B$	27.	
8.		28.	
9.		29.	
10.		30.	
11.		31.	
12.		32.	
13.		33.	

n	Задание	n	Задание
14.		34.	
15.	$A \subset B$	35.	
16.		36.	
17.		37.	$A \cup B \cup C$
18.		38.	
19.		39.	
20.		40.	

Задание 10.

Проверить справедливость тождеств, используя диаграммы Эйлера-Венна.

Таблица 10.

n	Задание
1.	$((A \setminus B) \setminus C) = (A \setminus C) \setminus (B \setminus C)$
2.	$\hat{A} \cup (\hat{A} \setminus (\hat{A} \cap \tilde{N}) = \hat{A} \cup \hat{A} \setminus (A \cap C)$
3.	$(A \cap \hat{A}) \cup C = (A \cup C) \cap (B \cup C)$
4.	$\hat{A} \setminus \hat{A} = \hat{A} \setminus (\hat{A} \cap \hat{A})$
5.	$A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$
6.	$\vec{A} \cap (\hat{A} \setminus \tilde{N}) = (\vec{A} \cap \hat{A}) \setminus \tilde{N}$
7.	$(A \setminus B) \setminus C = (A \setminus C) \setminus (B \setminus C)$
8.	$A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$
9.	$(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$
10.	$(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$
11.	$(\overline{\overline{A} \cup B}) \cup (A \cup \overline{B}) = B \setminus \mathring{A}$
12.	$A \cup B = A \cup (B \setminus A)$
13.	$A \setminus (B \cup C) = (A \setminus B) \setminus C$
14.	$A\Delta(B\Delta C) = (A\Delta B)\Delta C$
15.	$A \cap (B\Delta C) = (A \cap B)\Delta(A \cap C)$
16.	$A\Delta(A\Delta B) = B$
17.	$A \cup B = (A \Delta B) \Delta (A \cap B)$
18.	$A \setminus B = A\Delta(A \cap B)$
19.	$A \cup B = (A \Delta B) \cup (A \cap B)$

n	Задание
20.	$(A \setminus B) \cap (C \setminus D) = (A \cap C) \setminus (B \cup D)$
21.	$(A \setminus B) \setminus C = A \setminus (B \cup C)$
22.	$(A \cap B)\Delta(A \cap C) = A \cap (B\Delta C)$
23.	$\overline{A} \cap B = B \setminus A$
24.	$A\Delta(B\Delta A) = B$
25.	$(A\Delta B)\Delta C = A\Delta(B\Delta C)$
26.	$A \setminus B = A\Delta(A \cap B)$
27.	$(A \setminus B) \cap (C \setminus D) = (A \cap C) \setminus (B \cup D)$
28.	$A \setminus (A \setminus B) = A \cap B$
29.	$A \cap (B \setminus C) = (A \cap B) \setminus C$
30.	$(A \setminus C) \cup (B \setminus C) = (A \cup B) \setminus C$
31.	$A \cap (B \setminus A) = \emptyset$
32.	$A \cup B = A \cup (B \setminus A)$
33.	$(A \setminus B) \cup (A \cap C) = A \setminus (B \setminus C)$
34.	$(A \cap B) \setminus (A \cap C) = A \cap (B \setminus C)$
35.	$A \setminus (A \cap B) = A \setminus B$
36.	$A \cup B = B \cup (A \setminus B)$
37.	$A \cup B = (A \cap B)\Delta(A\Delta B)$
38.	$(A \setminus C) \setminus (B \setminus C) = (A \setminus B) \setminus C$
39.	$(A \setminus C) \cap (B \setminus C) = (A \cap B) \setminus C$
40.	$A \cup B = (A \cap B) \cup (A\Delta B)$

Задание 11.

Доказать справедливость тождеств, используя определения и свойства операций над множествами.

Таблица 11.

n	Задание
1.	$A \cap (B \setminus A) = \emptyset$
2.	$A \setminus (A \cap B) = A \setminus B$
3.	$A \cup B = B \cup (A \setminus B)$
4.	$A \cup B = (A \cap B)\Delta(A\Delta B)$
5.	$(\overline{\overline{A} \cup B}) \bigcup (A \cup \overline{B}) = B \setminus \mathring{A}$
6.	$A\Delta(A\Delta C) = C$
7.	$A \setminus B = A\Delta(A \cap B)$
8.	$(A \setminus B) \cap (C \setminus D) = (A \cap C) \setminus (B \cup D)$
9.	$A \setminus (A \setminus B) = A \cap B$
10.	$\hat{A} \cup (\hat{A} \setminus (\hat{A} \cap \tilde{N}) = \hat{A} \cup \hat{A} \setminus (A \cap C)$
11.	$(A \cap \hat{A}) \cup C = (A \cup C) \cap (B \cup C)$
12.	$(\overline{\overline{A} \cup B}) \bigcup (A \cup \overline{B}) = B \setminus \overrightarrow{A}$
13.	$A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$
14.	$A \cup B = (A \Delta B) \cup (A \cap B)$
15.	$(A \setminus B) \cap (C \setminus D) = (A \cap C) \setminus (B \cup D)$
16.	$(A \setminus B) \setminus C = A \setminus (B \cup C)$
17.	$(A \cap B)\Delta(A \cap C) = A \cap (B\Delta C)$
18.	$\vec{A} \cap (\hat{A} \setminus \tilde{N}) = (\vec{A} \cap \hat{A}) \setminus \tilde{N}$
19.	$A \cup B = A \cup (B \setminus A)$

n	Задание
20.	$(A \setminus B) \cup (A \cap C) = A \setminus (B \setminus C)$
21.	$(A \cap B) \setminus (A \cap C) = A \cap (B \setminus C)$
22.	$(A \setminus B) \setminus C = (A \setminus C) \setminus (B \setminus C)$
23.	$A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$
24.	$(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$
25.	$(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$
26.	$A \cup B = A \cup (B \setminus A)$
27.	$A \setminus (B \cup C) = (A \setminus B) \setminus C$
28.	$A\Delta(B\Delta C) = (A\Delta B)\Delta C$
29.	$A \cap (B\Delta C) = (A \cap B)\Delta(A \cap C)$
30.	$A \cup B = (A \Delta B) \Delta (A \cap B)$
31.	$A \setminus B = A\Delta(A \cap B)$
32.	$A \cup B = (A \cap B) \cup (A \Delta B)$
33.	$(A \setminus C) \setminus (B \setminus C) = (A \setminus B) \setminus C$
34.	$A \cap (B \setminus C) = (A \cap B) \setminus C$
35.	$(A \setminus C) \cup (B \setminus C) = (A \cup B) \setminus C$
36.	$(\hat{A} \setminus \hat{A}) \setminus \tilde{N}) = (\hat{A} \setminus C) \setminus (B \setminus C)$
37.	$A\Delta(A\Delta B) = B$
38.	$(A \setminus C) \cap (B \setminus C) = (A \cap B) \setminus C$
39.	$A\Delta(B\Delta A) = B$
40.	$(A\Delta B)\Delta C = A\Delta(B\Delta C)$

Задание 12.

Упростить выражение

Таблица 12.

n	Задание
1.	$B \setminus ((B \setminus A) \cup (A \cap B))$
2.	$(A \cap B \cap C) \cup (\overline{A} \cap B \cap C) \cup \overline{B} \cup \overline{C}$
3.	$\overline{(A \cup \overline{C}) \cup (\overline{A} \cup C)}$
4.	$\overline{(B \cup A) \cap \overline{\overline{A}} \cup (A \cap \overline{B})}$
5.	$\overline{\overline{A} \setminus \overline{B \cup C}} \setminus \overline{A} \cap \overline{B} \cap C \cup A \cap B \cap C$
6.	$(\overline{C} \cap A \cup \overline{C} \cup B) \cap (A \cap \overline{B} \cup C)$
7.	$\overline{\underline{A}} \setminus \overline{B \cap C} \setminus A \cap \overline{B} \cap C \cup A \cup B \cap C$
8.	$\overline{A} \cup A \cup B \cup \overline{\overline{B} \cup \overline{C}} \setminus A$
9.	$\overline{(A \cup B)} \cap (\overline{A} \cup \overline{B}) \cup (A \cup B)$
10.	$\overline{(\overline{A \cup \overline{B}})} \cup \overline{(\overline{A} \cup B)} \cap (A \cup B)$
11.	$(A \cup \overline{A} \cap B \cup \overline{A} \cap C) \cap \overline{A} \cap B \cap \overline{C}$
12.	$(A \cup B \cap C) \setminus (\overline{B} \cup \overline{C} \cup A \cap \overline{B} \cap C) \cup \overline{A \cup B \cup C}$
13.	$\overline{A \cap \overline{B}} \cup B$
14.	$(A \cup (B \setminus A) \cup \overline{A} \cap C) \cap \overline{A} \cap C \setminus C$
15.	$A \cup B \cap \overline{\overline{B} \cup \overline{C}} \setminus \overline{B}$
16.	$(\overline{A} \cap B \cup \overline{A} \cup C) \cap (B \cap \overline{C} \cup A)$
17.	$\overline{A} \cup (A \setminus \overline{B}) \cup (\overline{A} \setminus B)$
18.	$\overline{A} \cup \overline{A} \cup B \cup \overline{B} \cup \overline{C} \cap \overline{A}$
19.	$\overline{(\overline{A} \cup B)} \cup (A \cup \overline{B})$

n	Задание
20.	$A \setminus ((A \cap B) \cup (A \setminus B))$
21.	$C \cup \overline{C} \cup B \cup \overline{\overline{B} \cup \overline{A}} \setminus C$
22.	$\overline{B} \cup B \cup A \cup \overline{\overline{A} \cup \overline{C}} \cap \overline{B}$
23.	$(A \cap \overline{B} \cup \overline{A} \cap C) \cap \overline{A} \cap B \setminus C$
24.	$(\overline{C} \cap A \cup \overline{C} \cup C) \cap (A \cap \overline{C} \cup C)$
25.	$(A \cup B) \cap B \cup (\overline{B} \cap \overline{A})$
26.	$(A \cap B \cap C) \cup (A \cap B \cap \overline{C}) \cup \overline{B} \cup \overline{A}$
27.	$\overline{A \setminus B} \cup B$
28.	$\overline{(C \cup \overline{A}) \cup (\overline{C} \cup A)}$
29.	$A \cup C \cap \overline{\overline{C} \cup \overline{B}} \setminus \overline{C}$
30.	$\overline{B} \cup B \cup A \cup \overline{\overline{A} \cup \overline{C}} \setminus B$
31.	$\left(\overline{B} \cap \overline{A} \cup \overline{B} \cup C\right) \cap \left(\overline{C} \cap A \cup B\right)$
32.	$\overline{(A \cup \overline{B})} \cup \overline{(\overline{A} \cup B)}$
33.	$\overline{\overline{(A \cup B)} \cap (\overline{A} \cup \overline{B})}$
34.	$(\overline{B \setminus A} \setminus A \cap D) \setminus \overline{\overline{D} \cup C}$
35.	$(\overline{\overline{A} \cup \overline{B}}) \cup (\overline{\overline{A} \cup B})$
36.	$\overline{\overline{C} \setminus \overline{B \cup A}} \setminus \overline{C} \cap \overline{B} \cap A \cup C \cap B \cap A$
37.	$\overline{(B \cup C) \cap C \cup (C \cap \overline{B})}$
38.	$(\overline{B} \cup A) \cup (B \cup \overline{A})$
39.	$C \setminus (\overline{\overline{C}} \setminus A) \cup (A \cap C)$
40.	$(\overline{A \setminus B} \setminus B \cap C) \setminus \overline{\overline{C} \cup D}$

Задание 13. Решить задачу, используя формулы включений и исключений. Таблица 13.

n	Задание
1.	В прогулке участвовали 35 человек, 16 из них взяли с собой бутерброды с сыром, 24 — с колбасой, 15 — с ветчиной, 11 — с сыром и с колбасой, 8 — с ветчиной и с сыром, 12 — с колбасой и с ветчиной, а 5 вместо бутербродов взяли с собой пирожки. Сколько человек взяли с собой только бутерброды с ветчиной?
2.	Из 250 студентов 151 изучают немецкий язык, 136 — французский язык, 27 — итальянский, 63 — французский и немецкий, 7 — итальянский и французский, 11 — немецкий и итальянский, 4 — все три языка. Сколько студентов изучают или немецкий или французский язык?
3.	В офисе 103 сотрудников. 56 из них ездили в командировку в Брянск, 60 — в Орел, 59 — в Белгород. 39 человек ездили только в 2 из указанных городов. Только в Брянск ездили 10 человек, только в Белгород — 15 человек. Среди сотрудников офиса есть те, которые не ездят в командировки: 2 работника отдела кадров, 2 уборщицы, 2 охранника и 1 дворник. Найти число сотрудников офиса, побывавших в командировке во всех трех городах.
4.	В пиратском бою из 100 пиратов не пострадало только 25 человек. 16 пиратов потеряло только один глаз, 15 пиратов — только одну ногу, 20 — только одну руку. 11 пиратов потеряло ногу и руку, 7 пиратов — глаз и руку, 12 пиратов — глаз и ногу. Сколько пиратов потеряли и глаз, и ногу, и руку?
5.	Экзамен по математике содержал три задачи: по алгебре, геометрии и тригонометрии. Из 750 абитуриентов задачу по алгебре решили 400 абитуриентов, по геометрии — 480, по тригонометрии — 420. Задачи по алгебре или геометрии решили 630 абитуриентов; по геометрии или тригонометрии — 600 абитуриентов; по алгебре или тригонометрии — 620 абитуриентов. 100 абитуриентов не решили ни одной задачи. Сколько абитуриентов решили все задачи?

n	Задание
6.	На курсах иностранных языков учится 600 человек. Из них
	французский изучают 220 человек, английский – 270 человек.
	Слушатели, изучающие английский язык, не изучают
	немецкий язык; один французский язык изучают 100 человек,
	один немецкий язык изучают 180 человек. Сколько человек
	изучает по два иностранных языка?
7.	В группе 26 человек полностью сдали сессию со следующими
	результатами: 2 человека получили только "отлично"; 3
	человека получили отличные, хорошие и удовлетворительные
	оценки; 4 человека только "хорошо"; 3 человека только
	хорошие и удовлетворительные оценки. Число студентов,
	сдавших сессию только на "удовлетворительно", равно числу
	студентов, сдавших сессию только на "хорошо" или
	"отлично". Студентов, получивших только отличные и
	удовлетворительные оценки – нет. Сколько студентов сдали
	сессию только на "хорошо" и "отлично".
8.	В офисе 103 сотрудников. 56 из них ездили в командировку в
	Брянск, 60 – в Орел, 59 – в Белгород. 39 человек ездили
	только в 2 из указанных городов. Только в Брянск ездили 10
	человек, только в Белгород – 15 человек. Среди сотрудников
	офиса есть те, которые не ездят в командировки: 2 работника отдела кадров, 2 уборщицы, 2 охранника и 1 дворник. Найти
	число сотрудников офиса, побывавших в командировке
	только в Орле и Брянске.
9.	На кафедре иностранных языков работают 18 преподавателей.
).	Из них 12 преподают английский язык, 11 – немецкий язык, 9
	 французский язык. 5 преподавателей преподают английский
	и немецкий языки, 4 – английский и французский, 3 –
	немецкий и французский. Сколько преподавателей преподают
	все три языка?
10.	В пиратском бою из 100 пиратов не пострадало лишь 25
	человек. Из пострадавших пиратов 16 пиратов потеряло
	только один глаз, 15 пиратов – только одну ногу, 20 – только
	одну руку. 11 пиратов потеряло ногу и руку, 7 пиратов – глаз
	и руку, 12 пиратов – глаз и ногу. Сколько всего пиратов
	осталось без ноги?

n	Задание
11.	Экзамен по математике содержал три задачи: по алгебре, геометрии и тригонометрии. Из 800 абитуриентов задачу по алгебре решили 250 человек; по алгебре или геометрии – 660 человек; по две задачи решили 400 человек, из них две задачи по алгебре и и геометрии решили 150 человек, по алгебре и тригонометрии – 50 человек; ни один абитуриент не решил все задачи; 20 абитуриентов не решили ни одной задачи; только по тригонометрии задачи решили 120 человек. Сколько абитуриентов решили только одну задачу?
12.	На кафедре иностранных языков работают 18 преподавателей. Из них 12 преподают английский язык, 11 — немецкий язык, 9 — французский язык. 5 преподавателей преподают английский и немецкий языки, 4 —английский и французский, 3 — немецкий и французский. Сколько преподавателей преподают только два языка?
13.	Преподаватель литературы решил узнать, кто из 40 студентов изучил книги A , B , C . Результаты опроса показали, что книгу A прочитали 22 студентов, книгу $B-25$ студентов, книгу $C-21$ студент. Одну из книг A или B прочитало 32 студента, одну из книг A или C прочитало 30 студентов, Одну из книг B или C прочитало 28 студентов. Все три книги прочитали 10 студентов. Сколько студентов прочитали ровно по две книги?
14.	Каждый из 500 студентов обязан посещать хотя бы один из трех спецкурсов: по математике, физике, астрономии. Три спецкурса посещают 10 студентов, по математике и астрономии – 25 студентов, спецкурс только по физике – 80 студентов. Известно также, что спецкурс по математике посещают 345 студентов, по физике – 145, по астрономии – 100 студентов. Сколько студентов посещают только два спецкурса?
15.	На курсах иностранных языков учится 600 человек. Из них французский изучают 220 человек, английский – 270 человек. Слушатели, изучающие английский язык, не изучают немецкий язык; один французский язык изучают 100 человек, один немецкий язык изучают 180 человек. Сколько человек изучает один иностранный язык?

n	Задание
16.	В прогулке участвовало 35 человек, 16 из них взяли с собой бутерброды с сыром, 24 – с колбасой, 15 – с ветчиной, 11 – с
	сыром и с колбасой, 8 – с ветчиной и с сыром, 12 – с колбасой
	и с ветчиной, а 5 вместо бутербродов взяли с собой пирожки. Сколько человек взяли с собой бутерброды и с ветчиной, и с
	сыром, и с колбасой?
17.	Экзамен по математике содержал три задачи: по алгебре,
	геометрии и тригонометрии. Из 800 абитуриентов задачу по
	алгебре решили 250 человек; по алгебре или геометрии – 660
	человек; по две задачи решили 400 человек, из них две задачи
	по алгебре и и геометрии решили 150 человек, по алгебре и тригонометрии – 50 человек; ни один абитуриент не решил
	все задачи; 20 абитуриентов не решили ни одной задачи;
	только по тригонометрии задачи решили 120 человек.
	Сколько абитуриентов решили задачи по тригонометрии?
18.	Из 250 студентов 151 изучают немецкий язык, 136 -
	французский язык, 27 – итальянский, 63 – французский и
	немецкий, 7 – итальянский и французский, 11 – немецкий и
	итальянский, 4 – все три языка. Сколько студентов изучают
19.	немецкий и французский язык, но не итальянский? В офисе 103 сотрудников. 56 из них ездили в командировку в
19.	Брянск, 60 – в Орел, 59 – в Белгород. 39 человек ездили
	только в 2 из указанных городов. Только в Брянск ездили 10
	человек, только в Белгород – 15 человек. Среди сотрудников
	офиса есть те, которые не ездят в командировки: 2 работника
	отдела кадров, 2 уборщицы, 2 охранника и 1 дворник. Найти
	число сотрудников офиса, побывавших в командировке в
20	одном или двух городах.
20.	Каждый из 500 студентов обязан посещать хотя бы один из
	трех спецкурсов: по математике, физике, астрономии. Три спецкурса посещают 10 студентов, по математике и
	астрономии – 25 студентов, спецкурс только по физике – 80
	студентов. Известно также, что спецкурс по математике
	посещают 345 студентов, по физике – 145, по астрономии –
	100 студентов. Сколько студентов посещают по математике
	или физике?

n	Задание
21.	Из 250 студентов 151 изучают немецкий язык, 136 — французский язык, 27 — итальянский, 63 — французский и немецкий, 7 — итальянский и французский, 11 — немецкий и итальянский, 4 — все три языка. Сколько студентов не изучают ни одного языка?
22.	В отчете о количестве студентов, изучающих иностранные языки, сообщалось, что из 100 студентов все три языка изучают 5 человек, немецкий и английский — 10 человек, французский и английский — 8 человек, немецкий и французский — 20 человек, английский — 30, немецкий — 23, французский — 50. Инспектор, представивший этот отчет, был отстранен от работы. Найдите ошибку в его отчете.
23.	В группе 26 человек полностью сдали сессию со следующими результатами: 2 человека получили только "отлично"; 3 человека получили отличные, хорошие и удовлетворительные оценки; 4 человека только "хорошо"; 3 человека только хорошие и удовлетворительные оценки. Число студентов, сдавших сессию только на "удовлетворительно", равно числу студентов, сдавших сессию только на "хорошо" или "отлично". Студентов, получивших только отличные и удовлетворительные оценки – нет. Сколько студентов сдали сессию только на "удовлетворительно"?
24.	Экзамен по математике содержал три задачи: по алгебре, геометрии и тригонометрии. Из 750 абитуриентов задачу по алгебре решили 400 абитуриентов, по геометрии — 480, по тригонометрии — 420. Задачи по алгебре или геометрии решили 630 абитуриентов; по геометрии или тригонометрии — 600 абитуриентов; по алгебре или тригонометрии — 620 абитуриентов. 100 абитуриентов не решили ни одной задачи. Сколько абитуриентов решили только одну задачу?
25.	Из 250 студентов 151 изучают немецкий язык, 136 — французский язык, 27 — итальянский, 63 — французский и немецкий, 7 — итальянский и французский, 11 — немецкий и итальянский, 4 — все три языка. Сколько студентов изучают только итальянский язык?

n	Задание
26.	В офисе 103 сотрудников. 56 из них ездили в командировку в Брянск, 60 — в Орел, 59 — в Белгород. 39 человек ездили только в 2 из указанных городов. Только в Брянск ездили 10 человек, только в Белгород — 15 человек. Среди сотрудников офиса есть те, которые не ездят в командировки: 2 работника отдела кадров, 2 уборщицы, 2 охранника и 1 дворник. Найти число сотрудников офиса, побывавших в командировке хотя бы в одном из городов: Брянск, Белгород.
27.	В группе 25 человек, из них только 3 девочки: Света, Наташа, и Марина. 7 мальчикам группы нравится только Света, 5 мальчикам нравится только Наташа, 4 мальчикам нравится только Марина. 2 мальчикам нравится Света и Наташа, но не нравится Марина. 1 мальчику нравится Наташа и Марина, но не нравится Света. 1 мальчику нравится Света и Марина, но не нравится Наташа. 1 мальчику нравятся все 3 девочки. Скольким мальчикам не нравится ни одна из девочек этой группы?
28.	Преподаватель литературы решил узнать, кто из 40 студентов изучил книги A , B , C . Результаты опроса показали, что книгу A прочитали 22 студентов, книгу $B-25$ студентов, книгу $C-21$ студент. Одну из книг A или B прочитало 32 студента, одну из книг A или C прочитало 30 студентов, Одну из книг B или C прочитало 28 студентов. Все три книги прочитали 10 студентов. Сколько студентов не читали ни одной из указанных книг?
29.	В прогулке участвовало 35 человек, 16 из них взяли с собой бутерброды с сыром, 24 — с колбасой, 15 — с ветчиной, 11 — с сыром и с колбасой, 8 — с ветчиной и с сыром, 12 — с колбасой и с ветчиной, а 5 вместо бутербродов взяли с собой пирожки. Сколько человек взяли с собой только бутерброды с колбасой?
30.	В пиратском бою из 100 пиратов не пострадало лишь 25 человек. 16 пиратов потеряло только один глаз, 15 пиратов — только одну ногу, 20 — только одну руку. 11 пиратов потеряло ногу и руку, 7 пиратов — глаз и руку, 12 пиратов — глаз и ногу. Сколько всего пиратов осталось без руки?

n	Задание
31.	Из 250 студентов 151 изучают немецкий язык, 136 -
	французский язык, 27 – итальянский, 63 – французский и
	немецкий, 7 – итальянский и французский, 11 – немецкий и
	итальянский, 4 – все три языка. Сколько студентов изучают
	хотя два иностранных языка?
32.	В офисе 103 сотрудников. 56 из них ездили в командировку в
	Брянск, 60 – в Орел, 59 – в Белгород. 39 человек ездили
	только в 2 из указанных городов. Только в Брянск ездили 10
	человек, только в Белгород – 15 человек. Среди сотрудников
	офиса есть те, которые не ездят в командировки: 2 работника
	отдела кадров, 2 уборщицы, 2 охранника и 1 дворник. Найти
	число сотрудников офиса, побывавших в командировке
	только в Орле.
33.	Преподаватель литературы решил узнать, кто из 40 студентов
	изучил книги A , B , C . Результаты опроса показали, что книгу
	A прочитали 22 студентов, книгу $B-25$ студентов, книгу $C-$
	21 студент. Одну из книг A или B прочитало 32 студента, одну
	из книг A или C прочитало 30 студентов, Одну из книг B или
	С прочитало 28 студентов. Все три книги прочитали 10
2.4	студентов. Сколько студентов читали только по одной книге?
34.	Экзамен по математике содержал три задачи: по алгебре,
	геометрии и тригонометрии. Из 750 абитуриентов задачу по
	алгебре решили 400 абитуриентов, по геометрии – 480, по
	тригонометрии – 420. Задачи по алгебре или геометрии
	решили 630 абитуриентов; по геометрии или тригонометрии –
	600 абитуриентов; по алгебре или тригонометрии – 620
	абитуриентов. 100 абитуриентов не решили ни одной задачи.
35.	Сколько абитуриентов решили по крайней мере 2 задачи?
33.	В группе 25 человек, из них только 3 девочки: Света, Наташа,
	и Марина. 7 мальчикам группы нравится только Света, 5
	мальчикам нравится только Наташа, 4 мальчикам нравится только Марина. 2 мальчикам нравится Света и Наташа, но не
	нравится Марина. 1 мальчику нравится Наташа и Марина, но
	не нравится Света. 1 мальчику нравится Паташа и Марина, но
	не нравится Света. 1 мальчику нравится Света и Марина, но не нравится Наташа. 1 мальчику не нравится ни одна девочка
	группы. Скольким мальчикам нравятся все 3 девочки?
	труппы. Скольким мальчикам нравятся все э девочки!

n	Задание
36.	Каждый из 500 студентов обязан посещать хотя бы один из трех спецкурсов: по математике, физике, астрономии. Три спецкурса посещают 10 студентов, по математике и астрономии – 25 студентов, спецкурс только по физике – 80 студентов. Известно также, что спецкурс по математике посещают 345 студентов, по физике – 145, по астрономии – 100 студентов. Сколько студентов посещают хотя бы два спецкурса?
37.	В группе 26 человек полностью сдали сессию со следующими результатами: 2 человека получили только "отлично"; 3 человека получили отличные, хорошие и удовлетворительные оценки; 4 человека только "хорошо"; 3 человека только хорошие и удовлетворительные оценки. Число студентов, сдавших сессию только на "удовлетворительно", равно числу студентов, сдавших сессию только на "хорошо" или "отлично". Студентов, получивших только отличные и удовлетворительные оценки — нет. Сколько студентов сдали получили хотя бы одну оценку "удовлетворительно"?
38.	В прогулке участвовало 35 человек, 16 из них взяли с собой бутерброды с сыром, 24 – с колбасой, 15 – с ветчиной, 11 – с
	сыром и с колбасой, 8 – с ветчиной и с сыром, 12 – с колбасой и с ветчиной, а 5 вместо бутербродов взяли с собой пирожки. Сколько человек взяли с собой только бутерброды с сыром?
39.	В пиратском бою из 100 пиратов не пострадало лишь 25
	человек. 16 пиратов потеряло только один глаз, 15 пиратов – только одну ногу, 20 – только одну руку. 11 пиратов потеряло ногу и руку, 7 пиратов – глаз и руку, 12 пиратов – глаз и ногу. Сколько всего пиратов осталось без глаза?
40.	В офисе 103 сотрудников. 56 из них ездили в командировку в Брянск, 60 — в Орел, 59 — в Белгород. 39 человек ездили только в 2 из указанных городов. Только в Брянск ездили 10 человек, только в Белгород — 15 человек. Среди сотрудников офиса есть те, которые не ездят в командировки: 2 работника отдела кадров, 2 уборщицы, 2 охранника и 1 дворник. Найти число сотрудников офиса, побывавших в командировке по крайней мере в двух городах.

Задание 14. Построить множество точек плоскости, заданное условием Таблица 14.

n	Задание	n	Задание
1.	$\int x + y > 0,$	21.	$\int x - y \le 2$,
	$\int x^2 + y^2 < 1$		$\lfloor x + 2y < 4 \rfloor$
2.	$x^2 - y^2 = 0$	22.	$xy \ge -1$
3.	2x - y > 3	23.	$0 \le y - 2^x \le 1$
4.	xy > 0	24.	$ x-y \le 1$
5.	$-x^2 \le y \le x^2$	25.	$(2x-1)(y+3) \ge 0$
6.	(x+1)(y-2)<0	26.	$\left (x-1)^2 + y \right \ge 1$
7.	5x + 2y > 10	27.	$2 \le y - 3x \le 5$
8.	xy > 2	28.	$(y-4x+1)(y+3x) \ge 0$
9.	$\left x^2 + y\right \ge 1$	29.	x+2y <2
10.	$\int y - 2x > 0,$	30.	$\left(-x+y>0,\right.$
	y + x < 4		$\int (x-2)^2 + (y+1)^2 \le 16$
11.	$y\sqrt{x-1}<0$	31.	(x-2)y>0
12.	$0 \le y - \log_2 x \le 1$	32.	$xy \le -3$
13.	$x(2y+1) \ge 0$	33.	$9x^2 - 4y^2 = 0$
14.	x+y < 1	34.	$ x^2 - y < 1$
15.	<i>xy</i> ≤ 1	35.	$-2 \le y + 2x \le 4$
16.	$\frac{x}{-} < 0$	36.	$\frac{y}{\sqrt{x}} > 0$
	y-2		V 20
17.	$\frac{x}{y-2} < 0$ $-2 < y-2^x < 0$	37.	xy < 0
18.	$\left x^2-y\right =1$	38.	$-2 \le y - \log_2 x \le 0$
19.	$ \begin{bmatrix} y - 2x > 2, \\ 2y + x < 1 \end{bmatrix} $	39.	$\int 3x - y \le 5,$
	$\lfloor 2y + x < 1 \rfloor$		$\begin{cases} 3x - y \le 5, \\ (x+3)^2 + y^2 \le 25 \end{cases}$
20.	$ 3x - y \ge 6$	40.	$(x-3)(y+4) \le 0$

Задание 15. Доказать, воспользовавшись методом математической индукции. Таблица 15.

n	Задание
1.	$2+16+56++(3n-2)\cdot 2^{n}=10+(3n-5)\cdot 2^{n+1}$
2.	$5+45+325++(4n+1)\cdot 5^{n-1}=n\cdot 5^n$
3.	$\frac{1}{1\cdot 3} + \frac{7}{3\cdot 5} + \frac{17}{5\cdot 7} + \dots + \frac{2n^2 - 1}{(2n - 1)(2n + 1)} = \frac{n^2}{2n + 1}$
4.	$\frac{1 \cdot 7}{3 \cdot 5} + \frac{3 \cdot 9}{5 \cdot 7} + \frac{5 \cdot 11}{7 \cdot 9} + \dots + \frac{(2n-1) \cdot (2n+5)}{(2n+1) \cdot (2n+3)} = \frac{n \cdot (6n+1)}{3 \cdot (2n+3)}$
5.	$\frac{2}{3 \cdot 4} + \frac{3}{4 \cdot 5} \cdot 2 + \frac{4}{5 \cdot 6} \cdot 2^2 + \dots + \frac{n+1}{(n+2) \cdot (n+3)} \cdot 2^{n-1} = \frac{2^n}{n+3} - \frac{1}{3}$
6.	$\frac{3}{1 \cdot 2 \cdot 4 \cdot 5} + \frac{4}{2 \cdot 3 \cdot 5 \cdot 6} + \dots + \frac{n+2}{n \cdot (n+1) \cdot (n+3) \cdot (n+4)} = \frac{n \cdot (n+5)}{8 \cdot (n+1) \cdot (n+4)}$
7.	$3 + 20 + 128 + + (2n+1) \cdot 2^{n-1} \cdot n! = 2^n \cdot (n+1)! - 1$
8.	$\frac{1}{2} \cdot 2! + \frac{2}{2^2} \cdot 3! + \frac{3}{2^3} \cdot 4! + \dots + \frac{n}{2^n} \cdot (n+1)! = \frac{(n+2)!}{2^n} \cdot 2$
9.	$\frac{1}{3\cdot 5} + \frac{6}{5\cdot 7} + \frac{20}{7\cdot 9} + \dots + \frac{2n-1}{(2n+1)(2n+3)} \cdot 2^{n-1} = \frac{2n}{2n+3} - \frac{1}{3}$
10.	$2+18+60++n(n+1)(2n-1)=\frac{1}{6}n(n+1)(n+2)(3n-1)$
11.	$\frac{1}{3} + \frac{3}{3^2} + \frac{5}{3^3} + \dots + \frac{2n-1}{3^n} = 1 - \frac{n+1}{3^n}$
12.	$4+60++(n+1)(3n-1)(3n-1)\cdot 4^{n-1}=n^2\cdot 4^n$
13.	$\frac{1\cdot 8}{4\cdot 7} + \frac{2\cdot 11}{7\cdot 10} + \dots + \frac{n(3n+5)}{(3n+1)(3n+4)} = \frac{n(n+1)}{3n+4}$
14.	$3.2 + 4.2^2 + 5.2^3 + + (n+2)2^n = (n+1)2^{n+1}-2$
15.	$n^3 + 11n$ кратно 6

n	Задание
16.	$5^n - 3^n + 2n$ кратно 4
17.	$7^{n} + 3n - 1$ кратно 9
18.	$5 \cdot 2^{3n-2} + 3^{3n-1}$ кратно 19
19.	$6^{2n} + 19^n - 2^{n+1}$ кратно 17
20.	$2^{2n-1} - 9n^2 + 21n - 14$ кратно 27
21.	n прямых, лежащих в одной плоскости и имеющих общую точку, делят плоскость на $2n$ частей
22.	n различных точек, лежащих на прямой, делят ее на $n+1$ интервалов (из которых два интервала бесконечны)
23.	$4^n \ge 3^n + n^2$ при $n \in N$
24.	$a_1 = 29$, $a_2 = 85$, $a_{n+2} = 5a_{n+1} - 6a_n$.
	Докажите, что $a_n = 2^n + 3^{n+2}$, $n \in N$
25.	$a_1 = 1$, $a_2 = 9$, $a_{n+2} = 9a_{n+1} - 20a_n$
	Докажите, что $a_n = 5^n - 4^n$, $n \in N$
26.	$a_1 = 4, a_{n+1} = 3a_n - 2.$
	Докажите, что $a_n = 3^n + 1, n \in N$
27.	$\sqrt{n} < 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} < 2\sqrt{n}$
28.	$\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \dots \cdot \frac{2n-1}{2n} \le \frac{1}{\sqrt{3n+1}}$
29.	$(n+1)(n+2)\dots(n+n) = 2^n \cdot 1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1).$
30.	для любого натурального n справедливо утверждение: $3^{2n} - 8n - 1$ кратно 16
31.	при $n \in N$ и $n \ge 4$ имеет место неравенство $3^n > 5n^2$

n	Задание
32.	10^n - $9n$ - 1 делится на 81 при $n \in N$
33.	при $n \in N$ и $n \ge 5$ справедливо неравенство $2^n \ge n^2 + n + 2$
34.	$7 \cdot 5^{2n-1} + 2^{3n+1}$ делится на 17 при любом натуральном значении n
35.	$7^{n} + 3^{n+1}$ делится на 4 при всех натуральных значениях n
36.	$4^n > 3^n + 2^n$ при $n \in N$ и $n \ge 2$
37.	$3^n > 2^n + n$ при $n \in N$
38.	$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{3n+1} > 1$
39.	$2^{n-1} > n \cdot (n+1) \ n \in N \text{ if } n \geq 7$
40.	$5^n > 7n$ —3 при $n \in N$

Список рекомендуемой литературы

- 1. Александров П.С. Введение в теорию множеств и общую топологию. М.: Физматлит, 2009. 356 с.
- 2. Воронин А.В. Дискретная математика: учебное пособие / А.В. Воронин. Томск: Изд-во Томского политехнического университета, 2009. –116 с.
- 3. Кузнецов О.П. Дискретная математика для инженера. Изд.6 М.: URSS, $2009.-400\ c.$
- 4. Куликов, Л.Я. Алгебра и теория чисел: Учеб. пособие. М.: Высшая школа, 2002, 559 с.
- 5. Лавров И.А., Максимова Л.Л. Задачи по теории множеств, математической логике и теории алгоритмов. М.: Физматлит, 2004.-256 с.
- 6. Новиков Ф.А. Дискретная математика для программистов. СПб.: Питер, 2000. 364 с.
- 7. Пухначев Ю.В., Попов Ю.П. Математика без формул. Книга первая: Множества, отображения, последовательности, ряды, функции, дифференциальное и интегральное исчисление, функции многих переменных. Изд.3, Кн.1 М.: 2010. 513 с.
- 8. Хаггарти Р. Дискретная математика для программистов. М.: ТЕХНОСФЕРА, 2005.
- 9. Шевелев Ю.П. Дискретная математика. Учеб. пособие –СПб: Изд-во «Лань», 2008.-592 с.
- 10. Яблонский С.В. Введение в дискретную математику. М.: Высшая школа, 2003. 384 с.